
1. Introduction

Various broadband Internet access technologies have
become commoditized in recent years. However, while
the commoditized access for public Internet works more
than adequately for residential and individual purpos-
es, corporations and other organizations require more
customized service. Instead of basic Internet access,
organizations often have needs for such services as pri-
vate site-to-site connectivity and authentication of users
– all provided with quality assurances. These, in turn, are
not commodities, but may be prohibitively expensive
especially for smaller entities.

A virtual service operator model attempts to provide
benefits of both commoditized access and customized
services. The model is based on the concept of lever-
aging the commoditized access and implementing an
additional, virtual layer providing the required services
without costly infrastructure investments. A very basic
example is providing site-to-site connectivity with a
Virtual Private Network [1] instead of more traditional
dedicated line, Frame Relay, ATM or MPLS connections.
The traditional and VPN-based site-to-site connectivity
are illustrated in Fig. 1.

A problematic issue with VPNs as a technology has
been lack of flexibility – capabilities to do dynamic re-
configuration of the virtual network when underlying to-
pology changes: e.g., links go up and down, IP allocation
changes, and similar issues. Furthermore, redundancy
in case of outages is often limited. 

The other alternative to VPNs – a traditional multi-
homing setup – is also not possible with commodity con-
nections, since in practice you cannot set up routing

protocols through such connection. Even if you could, the
convergence time of multi-homing can be in the order
of minutes. 

Allowing sites to have multiple inexpensive, dynami-
cally reconfiguring, redundant connections, possibility
to have the sites mobile, and providing all this with at
least limited Quality of Service requires new approaches.

As one possible approach to address the issues men-
tioned earlier, we have proposed a solution based on
Mobile IPv4 Network Mobility protocol [2]. The Mobile
IPv4 Network Mobility takes care of near-instant switch-
overs in case of outages. Mobile IP can address the dy-
namic reconfiguration issue as well; Mobile IP is, by de-
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As residential Internet access has become increasingly commoditized, the incentives to lower costs in enterprise and similar
networks with service level agreements have grown as well. Simply switching to a VPN provided over Internet brings cost savings
but at the same time loses any guarantees of service level. We have devised a Mobile IP-based approach to virtualize networks
without neglecting Quality of Service. As part of this specific approach, the signaling traffic levels go up as complexity of 
the network grows. To mitigate this issue, we have created a simple yet effective scheme to compress information on IPv4 network
prefixes and realms. In this paper, we present analysis of our scheme’s effectiveness and feasibility using both generated and
real-world test material. We also consider the extensibility to IPv6 network prefixes.
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Figure 1.  Traditional operator and VPN models



sign, always actively striving for a functional point of at-
tachment. The primary advantage of Mobile IP as a tech-
nology compared to e.g. routing protocols is extreme-
ly lightweight yet comprehensive signaling, allowing for
the fast reaction times to changing conditions. All sig-
naling transactions consist of single request and res-
ponse messages, yet the message format facilitates
complex information structures due to extensibility. Thus,
reactions to topology changes can be as fast as single
round-trip-time (RTT). Furthermore, Network Mobility al-
lows routing information to be disseminated from a sin-
gle, centralized point and does not require any sort of
routing protocols to be set up for internal use.

Mobile IP Network Mobility has several immediate-
ly obvious challenges, especially when the number of
sites and site-to-site connections increase. With the
basic IPv4 Network Mobility, the Home Agent acts as a
topological anchor for all data plane traffic to and from
sites, creating a bottleneck at the center of the virtual
topology. Therefore, our proposed extensions [3] to the
basic Mobile IPv4 Network Mobility protocol add Route
Optimization functionality. The intention is to offload most
of traffic away from the Home Agent and allow direct and
optimal paths between sites, thus conserving Home Ag-
ent’s bandwidth and avoid the Home Agent becoming
the bottleneck.

Route optimization in case of Mobile IPv4 introduc-
es another operational challenge. Assuming that the
number of sites and their connectivity is not fixed and
varies over time, then a mechanism should exist for
each site to learn about each other without extensive pre-
configuration. To address this issue, our proposed ex-
tensions allow a Home Agent to distribute information
about existing Mobile Routers to their peer routers. With
this Home Agent assisted Route Optimization (“HAaRO”)
approach, Mobile Routers, either when registering to
the Home Agent or when updating their mobility bind-
ings, will learn of each other, thus being able to route
traffic directly between them instead of via the central
Home Agent.

Depending on the number of sites and the networks
located behind the Mobile Routers the overhead of Mo-
bile IPv4 signaling grows significantly. The signaling
overhead may not be a show-stopper in general for the
HAaRO approach but needs to be addressed as networks
grow.

In order to reduce the signaling overhead when our
proposed approach is used, the extensions include sim-
ple encoding algorithms for the route optimization infor-
mation in the Mobile IPv4 signaling messages. There
are two algorithms: one for compressing the subnet rout-
ing-related IP network prefix information, and one for
compressing the administrative scoping-related realm
information. In this paper we evaluate the usefulness
of the compression algorithms and study their perfor-
mance in various scenarios. The algorithms have been
designed having low computation and memory footprint
requirements in mind. Additionally, our algorithms do not
expect past history information of previous messages

and each message is self-contained compression-wise.
This design sacrifices efficiency over simplicity to some
degree. The compression of route optimization infor-
mation is an optimization for the HAaRO approach, not
the core functionality of the whole solution. Furthermore,
the algorithms may have applications in other areas
where IP topology information needs to be transmitted
between nodes that have both limited processing po-
wer and bandwidth, allowing for a cost-effective means
for communication.

This paper is based on earlier work [4] published in
ConTEL 2009 conference. New additions are focusing
on our efforts to extend the functionality to IPv6 network
addresses. Thus we are also studying the algorithms’
effectiveness on IPv6 network prefixes, although the ori-
ginal design was based on IPv4 network addressing.
Besides that, we have made some clarifications to the
text in general and our earlier results. 

The rest of the paper is structured as follows. Sec-
tion 2 has a more in-depth details on the Mobile IP-bas-
ed Virtual Operator model. Section 3 provides an intro-
duction to the two compression algorithms. Section 4
details our experimentation set-up and testing proce-
dure, with corresponding results of our study. Finally,
Section 5 concludes this paper with Section 6 contain-
ing some possibilities for future work.

2. Virtual operator model 
utilizing network mobility and 
route optimization 

This paper frequently uses terms such as an IPv4 prefix
[6], IPv6 prefix [7], and a realm [8]. 

The realm within this paper defines an administra-
tive domain. Realms are named in similar fashion to In-
ternet domain names, such as “foo.example.com”.

The IPv4 prefix corresponds to an IPv4 network add-
ress, in form of a.b.c.d/yy, where y y is the prefix length,
in bits. In the same vein, the IPv6 prefix is an IPv6 net-
work address, in form aaaa:bbbb:cccc:dddd::/yy. For
more details on these concepts and how they relate to
our algorithms see Section 3.

Fig. 2 shows an example virtual operator deployment,
where the customer entity, such as an enterprise, has
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Figure 2.  Mobile IP Nemo/Route optimization model



three regional sites (sites A, B and C). Each site is con-
nected to two regular ISPs with regular, commodity Inter-
net connections. For example, Site A-to-B connection has
two possible paths – one directly through ISP 1 and other
utilizing ISP’s 2 and 3. The gateway router at each site
connecting to the Internet also acts as a Mobile Router.
The regional site networks, in effect, become Mobile Net-
works. Unlike in the usual case where the mobility pro-
cessing (handovers) occur when the network physically
moves, in this case the mobility is triggered by chang-
ing conditions of the ISP’s networks. As an example, as-
sume that Site A’s primary link is provided by ISP 1. When
Site A’s link to ISP 1 goes down, the inter-site connecti-
vity remains up – the Mobile IP process simply changes
the network’s point of attachment to ISP 2 and connectivi-
ty is preserved. The scenario is more fully outlined in [5].

As noted earlier, utilizing Mobile IPv4 Network Mobi-
lity bestows heavy throughput requirements on the Home
Agent and the virtual operator’s own back-end network.
The HAaRO approach [3] proposes an extensive use of
route optimization, where Mobile Routers at customer
sites would exchange traffic directly as much as pos-
sible without routing traffic via the Home Agent. The
HAaRO approach also attempts to solve route optimi-
zation related management issues, such as discover-
ing peer Mobile Routers, by having the Home Agent dis-
tribute prefix and realm information to Mobile Routers
piggybacked in the Mobile IPv4 registration signaling.
In this way the virtual operator can provide almost self-
organizing composition of dynamically changing mobile
networks without extensive configuration management.
One area worth mentioning is that full convergence is
not required; Triggering of Route Optimization can start
at any Mobile Router. Non-optimized traffic is simply for-
warded via the Home Agent as a fallback measure. How-
ever, assuming that all Mobile Routers have uniform
Mobile IPv4 registration refresh time refreshMIP4, i t  is
possible to totally distribute the changes in the virtual
network approximately within refreshMIP4 time.

In IP communication protocols, a very common mo-
del is to separate control plane functionality from data
plane. Furthermore, the signaling messages that are
transmitted on the control plane typically have sever-
al constraints. Typical constraint is preference for low
bandwidth. Another common constraint is a signaling for-
mat requiring all information to be transmitted within
single Packet Data Unit (PDU). This is especially the case
in request-response type protocols where each request
warrants only a single response.

A large enterprise might have tens or hundreds of
regional sites with a varying number of IP subnets due
to incremental nature of deploying networks. A Home
Agent distributing large amount of customer site prefix
and realm information easily increases the PDU size
beyond what is considered reasonable. While the trans-
port protocol, UDP, allows PDU sizes up to 64 kilobytes,
the underlying IP layer is responsible for fragmentation
which is typically not desired or at least should be kept
to a minimum.

It becomes evident that the growth of the signaling
message size must be addressed. This paper evaluates
the usefulness of the compression algorithms we have
developed for reducing the signaling message size and
studies their performance in various scenarios.

3. Space efficient encoding of 
prefix and realm information

A) Introduction
As stated in Section 2, IP network prefixes corres-

pond to IP network address, in form of a.b.c.d/yy (IPv4)
or aaaa:bbbb:cccc:dddd::/yy (IPv6).

An IP address is divided into network portion and
host portion. In case of IPv4, the highest y y bits are con-
sidered the network portion identifying a subnet, while
lower bits are for distinguishing individual hosts with-
in the subnet. Networks are generally [9] allocated ac-
cording to the number of expected hosts in the subnet:
e.g. a network with prefix length of y y=28 consists of
16 host addresses. The first address of the network is
the network itself, and last is reserved for broadcast,
thus allowing for 14 true hosts. The network may be fur-
ther subnetted, e.g. to two y y=29 networks, each accom-
modating up to six hosts. The network prefix length can
be 0-30, network size /31 having no room for true hosts
and /32 being a single IP address.

In case of IPv6, the lowest 64 bits of 128-bit IPv6 add-
ress are considered to be the host portion and highest
64 bits are the network portion – these allocations do
not change. Thus, for purposes of network prefixes, on-
ly the first 64 bits have significance. The network pre-
fix length can thus be 0-64, and primary consideration
on prefix length is further subnetting. The prefix length
has no effect on number of hosts that can be accommo-
dated in the network.

The compression algorithms for both prefix and realm
compression had the following as guiding design goals: 

• The algorithms are for generic optimization 
purposes only, not core functionalities of 
the HAaRO approach. 

• The algorithms should have low computational
requirements. 

• The algorithms should have a minimal memory
footprint as e.g., a Home Agent may be serving
thousands of sites, thus memory consumption 
is an issue. 

• The algorithm should not require maintaining
state between messages i.e., each compressed
message should be self-contained. 

Given the above design goals we can already see
that the compression efficiency is not going to be among
best available algorithms.

There are existing approaches to address IPv4 net-
work prefix compression, for example in the context of
MANETs [10]. However, the design parameters of our pro-
posals are different from MANET. 

IPv6 has significantly more development. Recently
6LOWPAN [11] has standardized a frame format for the
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transmission of IPv6 packets over low-power personal
area IEEE 802.15.4 networks [13]. Since the IEEE 802.15.4
maximum physical layer packet size is only 127 octets
with 25 octets frame overhead that leaves only 102 oc-
tets for the media access control layer. Therefore 6LOW-
PAN has gone to extreme on defining a space efficient
encoding of IPv6 and transport layer headers [12]. From
the 6LOWPAN we could actually take advantage of its
novel approaches for compressing IPv6 addresses. First,
add a specific handling for well-known IPv6 prefixes ef-
fectively replacing the static known part up to the first
64 bits of the IPv6 prefix with one bit or maximum two-
three more bits. Second, use of contexts. In our concept,
a context is actually close to Master Prefix, which is
further discussed in Section 3.B. The difference is that
in our algorithm the context size has been one, whereas
in 6LOWPAN there can be up to 16 contexts. 

Besides 6LOWPAN, the IPv6 specification [7] includes
zero compression for text formatted IPv6 addresses.
However, the zero-compression serves only notational
purposes of simplifying human-readable addresses and
has no direct significance for our purposes.

B) Prefix compression Algorithm
1. IPv4 prefix compression

The prefix compression algorithm is fully presented
in [3], Section 4-1. The basis for the algorithm’s design
is the assumption that transmitted prefixes will be rela-
tively close to one another – in best case, sequential,
(e.g. 1.1.1.0/24, 1.1.2.0/24,...). The assumption stems
from common design where an organization is assign-
ed a single IP block which is then subnetted and dis-
tributed amongst organization’s network sites and the
use case with Mobile Routers.

Other design parameters were simplicity in the com-
mon case of a single prefix per Mobile Router and pos-
sibility to extend the functionality later. One such ex-
tension is the IPv6 prefix compression illustrated in next
section.

The presented prefix compression algorithm does
not define compressor/decompressor implementation;
only the data format. There may be more efficient com-
pression implementations (See Section 6) compared to
our approaches. The implementation-specific differen-
ces stem from the order the prefixes are processed by
the algorithm.

The compression algorithm is based on concept of
Master and Delta prefixes. At least one Master Prefix is
sent before any Delta Prefixes. After the initial Master
Prefix is sent, the following prefixes can be either Master
or Delta.

Master prefixes are encoded asis, except tailing oc-
tets comprising wholly of zeroes are dropped. Thus e.g.
1.2.3.0/24 is encoded with 3 octets and 1.2.0.0/16 with
2 octets; However, 1.2.0.0/20 is also encoded with 3 oc-
tets since prefix length of /20 extends to the third octet,
even though the contents of the third octet is zero.

Delta prefixes are always encoded as a single oc-
tet; the 8 least-significant bits of the prefix are includ-

ed. Delta prefixes can be used if the difference between
the delta prefix and the master prefix fits to the 8 en-
coded octets. If the Master Prefix is longer than the cur-
rent prefix, the tailing bits are not compared due to them
implicitly being zeroes. Thus even significantly different
prefix may still be compressed if the length is shorter,
e.g. if 1.2.3.4/28 is the master prefix, 1.6.0.0/16 can be
encoded with a single byte.

Figure 3.  
Protocol structure
concerning prefixes

When decoding a Delta-encoded prefix, the prefix is
formulated as follows: 

– Fill the right-hand side of the prefix 
with zeroes until Prefix Length (Plen) is reached. 

– Fill the 8 bits, starting from Plen, 
from the received Delta prefix. 

– Fill the remaining bits from Master Prefix. 
The repeatable protocol structure defined in the [3]

related to prefixes is presented in Fig. 3. Of the three
flags, the ‘O’ concerns network topology and is of no sig-
nificance to the compression. Flags ‘D’ and ‘M’ deter-
mine the contents of the Data field. 

The data field can contain either a Mobile Router add-
ress (if M=1; in this case value of ‘D’ will be ignored) or
a Master or Delta prefix. The algorithm always maintains
the current master prefix; If a new Master prefix is re-
ceived, the new one will replace the existing one.

Thus, the first time the structure is received, it always
has M=1 and gives the Mobile Router the following pre-
fixes are bound to; The next one always has D=0 and
M=0, and provides the first Master Prefix. After that all
combinations are permissible. Note that Delta prefixes
wil l  always apply to the current Master Prefix, even if
the Mobile Router has changed. Thus, the value of M bit
also has no significance to the compression.

Prefix Length is included in the separate 5-bit Plen
field, allowing for values of 0-31.

2. Refinements concerning IPv6
The original header octet only allows for prefix length

sizes of 0-31, which is too small for IPv6 prefixes. Thus
the header octet has been redesigned and is slated to
be included in the next version of [3]. The revised ver-
sion, shown in Fig. 4, allows for more signals for Mo-
bile Router purposes and also allows transmitting for
IPv6 prefix lengths. 

Figure 4.  Protocol structure concerning prefixes

We take advantage of the fact that besides IPv4 pre-
fixes of length 0-31, we can handle the cases without
prefix information, or with special prefix lengths, by
overloading the Plen field. Whether the Plen field corre-
sponds to prefix length or one of the special cases is
now identified by a new I-bit (Indication), and old ‘M’
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and ‘O’ bits have been removed. The special cases,
where I is set to 1, affect interpretation of Plen field as
follows: 

• When the address is a prefix of length /64, 
the Plen is set to zero. This effectively extends Plen
field to 7 bits to allow for the /64. 

• When the prefix length is IPv6-compatible 
representation of IPv4 prefixes [7], 
in effect a prefixes of size /96-/127, the Plen is set
to a value from 32 to 63, again simply extending 
the Plen field to 7 bits. When the prefix is a
Master Prefix, only 0-4 octets are encoded since
the highest 96 bits are well-known. 

• When the address is a Mobile Router, that is, 
corresponding to the old header’s case M=1, 
the Plen is set to 1. As an extended Plen field,
this would correspond to a prefix size /65, which
is an illegal prefix length for both IPv4 and IPv6. 

• When the address is a prefix of length /128, 
corresponding to a single host, the Plen field is
set to 2. As with the case of Mobile Router, 
this would correspond to a prefix length /66,
which is also considered illegal. 

• Since the old ‘O’ field is related to Mobile Router
instead of individual prefixes, it can also be 
indicated with a specific bit within Plen field 
if I=1. For our efficiency study purposes, 
we did not assign a specific value. 

• Further signaling can be added as necessary. 
Since the prefix size variation can be larger with

IPv6, it might be beneficial to use more than one single
delta byte. However, currently we can only indicate the
presence of delta with a single bit, not delta sizes.
Additional bits to indicate presence of multiple delta
octets would also require an extra octet, thus the effec-
tiveness is questionable. 

C) Realm compression Algorithm
In the context of Mobile IP, the term Realm is used

to signify an administrative domain. “Realm name” can
be considered a Domain Name System’s (DNS) domain
name; Similar structure is evident. The compression al-
gorithm for realm names is inspired by the original do-
main name compression presented in RFC 1035 [14].
However, our algorithm has been enhanced further to a
full-fledged dictionary-based system with a simple, com-
putationally lightweight encoder and decoder. The algo-
rithm is designed to perform well in the common cases
of relatively few (maximum 128) separate realm labels.
A maximum length of a realm or a domain name is less
than 256 octets. Assuming a naive implementation of the
dictionary that makes separate copies of the stored
strings and some indexing overhead, the maximum dic-
tionary memory usage is around 40 kilobytes (i.e., 128*
(255+overhead) bytes).

The algorithm works on a label level. The dictionary
is updated dynamically with one or more labels from
the input “realm name” to the algorithm. Every time a
single label or a suffix of a “realm name” is not found

in the dictionary, one or more labels are inserted to the
dictionary and encoded into the output octet stream us-
ing the encoding shown in Fig. 5. Of every input “realm
name” the suffixes that were not found in the dictionary
are also inserted into the dictionary.

Figure 5.  Bit and octet encoding of a new label

When a label or a suffix of a “realm name” is found
in the dictionary, the index to the dictionary is encod-
ed to the output octet stream as shown in Fig. 6. The
dictionary holds maximum 128 strings. When the 129th
string would be inserted into the dictionary, the dictio-
nary gets reset and the new string will become the 1s t
string in the dictionary.

Figure 6.  
Bit and octet encoding of

a dictionary index

Consider an example of the input realm “foo.bar.
example.com”. The compression algorithm searches the
dictionary with the following strings: 

– “foo.bar.example.com”, 
– “foo.bar.example”, 
– “foo.bar”, and 
– “ foo”. 

The longest found string is encoded. If no matching
string was found, the label “ foo” is encoded and insert-
ed into the dictionary. The process is repeated until the
whole input realm has been encoded (i.e. “bar.example
.com” would be the input realm for the second iteration).

The algorithm also keeps track of the longest suff ix
per input realm that only consist of encoded labels.
Every time an index to the dictionary can be encoded
the tracked longest suffix gets reset. Once the input
realm has been processed, the longest tracked suff ix
is inserted into the dictionary. 

For example, if “bar.example.com” is the longest
tracked suffix of “foo.bar.example.com”, then the algo-
rithm will insert “bar.example.com” and “example.com”
into the dictionary. The realm compression algorithm im-
plements a greedy approach of encoding matches. The
search algorithm and the dictionary update function does
not try to optimize updates and immediately encodes
the first found match. Lazy evaluation algorithms are
known to gain better compression than greedy ones [20].

The octet value 0x00 is used to terminate the encod-
ed stream of input realm. The encoding of both label or
index cannot output the value 0x00 and the Mobile IPv4
extensions defined for HAaRO make use of it in header
encoding.

The realm compression algorithm has also other in-
teresting properties. The compressor/decompressor state
is actually the dictionary. This allows easy and efficient
handling of the packet data. There is no need to keep
past or future input data available for the algorithm, on-
ly the very short piece of data that needs to be com-
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pressed or decompressed at time. Furthermore, the en-
tity doing the compression may at any time switch off
the compression algorithm without the decompressor
noticing it or causing any encoding size penalty com-
pared to completely uncompressed data. This is due the
design of the whole encoding of the HAaRO messages.
The uncompressed form of the realm information is as
compact as the original realm octet string.

1. Realm-compression Algorithm as a basis for 
dictionary-based IPv6 prefix compression

Due to the limitation of single-byte-deltas, we want-
ed to study the feasibility of dictionary-based approach
for compressing IPv6 prefixes. We adjusted our realm-
compression algorithm to make it more suitable for pre-
fix compression while still maintaining same low me-
mory footprint requirements. The changes are based on
the idea that single octet of an IPv6 address can now
be considered a “label”. 

The encoding is changed so that in Fig. 5, the “label
length” now corresponds to “number of labels following”.
Since label length is always one octet, there is no need
to identify each previously unknown label separately.
Furthermore, single octets are not stored in the dictio-
nary as was the case with realms, rather, all sub-prefix-
es (in contrast to suffixes in realms) are stored instead.
Also, instead of using a terminating octet 0x00, the to-
tal length of prefix is encoded as-is before each prefix.

As an example, consider two IPv6 prefixes, 2001:
0000:00a9::/55 and 2001:0000:00c0::/42. When encod-
ing the first prefix, the dictionary is empty. 

The encoding for the first prefix (besides prefix length)
is the following: 0x07 0x20 0x01 0x00 0x00 0x00 0xA9
0x00. This consists of number of labels following (7 oc-
tets, since all labels are unknown), and the prefix asis.
After the prefix has been encoded, the following sequen-
ces are inserted into dictionary:

2001:0000:00a9:00
2001:0000:00a9
2001:0000:00
2001:0000
2001:00
2001

The shortest sub-prefix, 20, is not inserted, as there
is no gain in encoding an octet with another octet. 

The encoding of the second prefix is now 0x82 0x01
0xc0, where 0x82 is reference to the third dictionary ent-
ry of “2001:0000:00”. 0x01 corresponds to single octet
that follows, which is encoded asis (0xc0). After encod-
ing, the dictionary gets one additional entry: 2001:0000:
00c0, as the previous sub-prefixes are already in dic-
tionary and single octets are not stored.

4. Testing setup and results

A) Prefix compression
Two implementations of the prefix compression al-

gorithm, one for IPv4 and one for IPv6, were written in
C, utilizing standard Socket API. These consisted of re-

quester and responder components, with the requester
acting in the role of a Mobile Router and responder act-
ing in a role of Home Agent. The responder initially reads
in and processes a list of network prefixes associat-
ed with Mobile Router addresses, and then starts wait-
ing for a request. The requester contacts the responder
with a request message, and the responder returns a
list of prefixes, compressed in accordance to the scheme.
This followed standard Mobile IP processing, although
true Mobile IP headers were not used.

The implementations offers the possibility to send
data either uncompressed or compressed. The uncom-
pressed option was used to obtain the baseline compa-
rison for each test case, where neither delta-compres-
sion or removing tailing zeroes are used. The compres-
sed option causes the responder to proceed as follows:

1. Read in all the prefixes and Mobile Router
addresses associated with each prefix. 

2. Group all prefixes managed by 
single Mobile Router together. 

3. For each Mobile Router, sort all prefixes in order;
The IP addresses are simply considered
unsigned 32-bit integers, or in case of IPv6,
unsigned 64-bit integers. Prefix lengths are not
taken into account at this point. 

4. Merge the prefixes from Mobile Routers back
together in the input order. 

5. Process prefixes in accordance to 
the compression algorithm: 
For each prefix, check whether the prefix can
be encoded as a delta of previous prefix; 
If yes, encode as delta prefix (1 octet), 
if no, encode as new master prefix (0-8 octets,
depending on the prefix length and IP protocol
version). If Mobile Router changes, encode 
the new Mobile Router’s address. 

6. Save the result into a buffer, waiting to be sent
to the requester. 

In encoding, we used the formats presented in Sec-
tion 3.B, the original format for IPv4 prefixes and re-
vised version for IPv6 prefixes. 

To come up with realistic test cases, the following
considerations were taken into account: 

– Intended usage and design: 
Prefixes are likely to be numerically close to each
other, including the completely sequential case. 

– The algorithm is designed to provide efficient
compression while prefix length variations are
small. When prefix lengths have greater variation,
the delta may no longer fit into a single octet 
and a new master prefix has to be set, consuming
space. This is especially a concern with IPv6. 

– Number of prefixes may vary depending 
on organizations size. 

– Number of Mobile Routers may vary depending
on organizations size. 

With this in mind, a prefix generator was implement-
ed that can generate list of IPv4 network prefixes in
a.b.c.d/yy format or IPv6 network prefixes in aaaa:bbbb:
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cccc:dddd::/yy format, and associate each prefix with
a Mobile Router address. This prefix list could then be
fed to the responder component of the implementation,
allowing for a quick testing of various cases. Genera-
tor can provide selectable number of prefixes of vari-
ous lengths around specified base prefix length (/ yy)
with selectable degree of randomness induced both to
prefix length and prefix sequentialness. The random num-
ber generator used was standard ISO C rand() function
which provides 32-bit random integers with uniform dist-
ribution. For IPv6 prefixes, two 32-bit integers were con-
catenated to form a single 64-bit prefix. The random num-
ber generator was initialized using seed derived from
system time before each new batch of prefixes.

In the cases where randomness plays a part – e.g.
when testing the performance where the compressed
prefixes are not completely sequential or prefix lengths
vary – each test case was conducted 10 times and re-
sults averaged. Minimum and maximum of each case
was also recorded to check for outliers.

Besides these generated test cases, a more realis-
tic source for real-world network prefixes was used for
IPv4 – the global Internet BGP routing table. In case of
IPv4, picking an A-class network of appropriate size to
correspond for each generated test set allowed a compa-
rison of the generator to real-world subnetting schemes.

The test matrix chosen includes 10, 500 and 5000 pre-
fixes, in sequential, near-sequential or totally random or-
der, shared equally between either 1 or 10 Mobile Routers.
Furthermore, each case had the prefix length either as
static (/24), or varying to a smaller (<8 bits) or greater
(<16 bits) degree. The “totally random” case attempted
to utilize entire (IPv4 or IPv6) address space, to create
appearance of totally unrelated network prefixes. “Near-
sequential” simply means occasionally skipping the next
network in sequence, and is our closest expectation of
real-world use-case. 

In addition, three test cases for IPv4 were taken from
global BGP routing Table [15]. The routing table was bas-
ed on data on 28th of August, 2008. The chosen /8 net-
works and their sizes are listed in Table 1. 

It should be noted that when conducting IPv6 tests,
lessons learned from IPv4 testing could already be tak-
en into account, and some IPv6-specific tests concern-
ing the increased address space were added. These
differences are further detailed in Section 4.G.

B) IPv4 network prefix compression results
Before measuring compression efficiency, a base-

line had to be established. The baseline for IPv4 prefix
compression – simply not compressing data at all – can
be seen in Table 2. 

The non-compressed size for each case shows that
as number of prefixes grow, the number of Mobile Rout-
ers has less and less proportional effect to the overall
size – each new Mobile Router adds a static five octets
(1 header octet, 4 octets for address) to the data. Thus,
for further observations, the case with 10 MRs is not sig-
nificantly different from the case with a single MR as an
additional MRs simply increases data size by constant
5 octets each.

The effect of sequentialness to the compression is
shown in Table 3, based on the case where prefix lengths
do not vary. The compression factors in the table are
based on the average compression in each of the ran-
domized cases. As can be seen, the performance is best
when prefixes are sequential and worst when random.
The real-world networking data, shown in the BGP col-
umn, appears to reflect the sequential/near-sequential
cases more than the completely random case, which is
encouraging. 

As mentioned, all test cases with random elements
were ran 10 times. Under no circumstances did the in-
dividual test runs significantly differ from the average.

The results in Table 3 are based on the case where
the prefixes are all of same length; In this case, /24. The
effect of varying the prefix lengths are shown in Table 4.
The values in percentages show compressed data length
compared to uncompressed data length with same num-
ber of prefixes. The effect of adding varying prefix lengths
to a small degree (cases with /8, prefix lengths from /20
to /27) causes what was expected compared to static
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Table 1.  
Real-world BGP routing 

table entries

Table 2.  
IPv4 Network Prefix 
compression test cases,
uncompressed data sizes

Table 3.  
Effect of IPv4 prefix sequence 

to compression. 
Percentages in parenthesis are 

the remaining data compared 
to uncompressed data. 



case – the compression factor decreases. Remaining
data length is around 50% of the original compared to
40% in the non-varying case.

Increasing the variability to a larger degree (cases
/16, prefix lengths from /16 to /31) causes more interest-
ing results. In the sequential case, results are identical
with the smaller variation, which was expected. With
near-sequential cases, the resulting data size is slight-
ly larger but not significantly, which is expected. How-
ever, in the totally random case, the compressed data
size is actually smaller than with smaller variance.

The reason for the better compression ratio in total-
ly random case, especially with the full 5000 prefix set,
might stem from the limits of IPv4 address space. As
our definition of “random” is filling the entire 32-bit add-
ress space, and the data set includes short prefixes,
the individual prefixes in the data set may not be so un-
related after all – a very short prefix may include signi-
ficant portion of the entire address space.

However, since the effect also appears with cases of
500 and 10 prefixes, the more likely reason is the algo-
rithm’s ability to drop tailing zeroes and make the delta
to higher-end bits of the master prefix. When prefix length
variation is small, almost all prefixes become master
prefixes. When prefix length variations are higher, the
tailing zeroes effect kicks in; e.g. a /28 prefix followed
by /16 one. The latter prefix quite likely has identical or
near-identical most significant bits, and the tailing ze-
roes can be left out; Thus it becomes a delta-prefix.
e.g. when Master Prefix being 1.12.23.16/28 the prefix
1.13.0.0/16 can be expressed as a delta, while 1.13.34.32/
28 would be encoded as a new Master Prefix.

C) Realm compression
Our C++ implementation of the realm compressor/

decompressor was tested against the test material con-
taining 500 Fully Qualified Domain Names (FQDN) gene-
rated from the zone “example.com” (total size of 11188
octets). In reality a MIP4 message would contain in ma-
ximum few dozens of realms. The material was gener-
ated using a list of English dictionary words of 3 letters
and higher, a subzone label (aaaa...xxxx) repeating 25
times and suffix “example.com”.

Finding a comparable real-world case to determine
the accuracy of our generated examples is hard in this
case, as the usage pattern is different from regular DNS.
However, regular DNS deployment can still give some
indication on the algorithms effectiveness on domain/
realm names. Thus, we retrieved the all FQDNs from

zone “cs.tut.f i”, consisting of 1285 entries and size of
26403 octets. A real HAaRO deployment is not intended
to be used with so many different entries.

The ordering of realms in the input data was expect-
ed to have an impact on the compression efficiency. If
realms that share common suffixes are close to each
other, then the dictionary gets updated less frequently.
Low number of updates to the dictionary implies fewer
dictionary resets, which in turn was expected to have
positive effect on compression. Each dictionary reset
causes the compressor to lose its current context. It will
take a while for the compressor to re-populate the dic-
tionary and provide good compression again.

D) Realm compression results
As mentioned, our realm compression test material is

a generated list of FQDNs (i.e., realms in this paper) from
“example.com” domain and containing up to 500 realms
consisting total of 11188 characters. In optimal order, with
least number of dictionary resets, the algorithm com-
presses it to 4294 octets, compressing the data to 38%
of the original size. The optimal order in this case being
one where all realms within the same subzone (e.g. “aaaa.
example.com”) are all presented in sequence.

With a harder, non-optimal order, the compressed data
contains 4716 octets, leaving 42% of original length. As
the dictionary has 128 entries, even non-optimal order-
ing does not cause significant efficiency losses until af-
ter first reset. The “non-optimal” order is one where the
adjacent subzones are always different (e.g. “bbbb.exam-
ple. com”, “cccc.example.com”, ...) until after 25 cycles.

The “bumps” caused by dictionary resets can be seen
in Fig. 7. 

Figure 7.  Realm compression results
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Table 4.  
Effect of varying prefix

lengths on compression.
Case indicates Number
of Prefixes / Maximum

variat ion.



Approximately after every 100th input of non-opti-
mally ordered realms, the dictionary gets reset. For op-
timally ordered realms the resets are less frequent and
less visible due the dictionary learning faster the cur-
rent context. In overall we are satisfied of the result
given the simplicity of our algorithm.

Comparing the results from generated data and our
chosen real-world example, the zone “cs.tut.fi” com-
pressed from 26403 octets to 13783, leaving 52% of
original data. Considering that the example is from a
standard DNS deployment where host names vary sig-
nificantly, slightly worse compression factor is to be ex-
pected.

E) Combined IPv4 prefix and realm compression
Most interesting results are expected when both pre-

fix and realm compression are used together, the rea-
son being that both prefix and realm input data com-
presses differently depending on the order the individ-
ual prefixes and realms are stored in the input data.

In the HAaRO specification, there is a dependency
between prefixes and realms. Each prefix may be asso-
ciated with zero or one realms. A realm cannot be en-
coded on its own without a prefix. However, prefixes can
be encoded without realms.

The optimal ordering of prefixes may not favor realms,
and vice versa. Therefore, in the combined case we exa-
mine what is the impact of favoring either prefixes or
realms optimal ordering during the compression. We
also present results of unrealistic case where both pre-
fixes and realms are ordered optimally for a compari-
son purposes (this is not supported by the current sig-
naling message format although network design may
take this into account).

F) Combined IPv4 prefix and realm compression results
Fig. 8 shows the results of combined prefix and realm

compression. We can make two obvious conclusions.
First, the compression has significant effect on the mes-
sage size and given the simplicity of
our algorithms, their use should be
encouraged. Second, the ordering of
the HAaRO information has an impact
on the compression efficiency. We can
see that ordering by a prefix will give
the best results due the nature of our
algorithms – the prefix compression
algorithm is a simple delta coding,
which effectively only has a history
of the one immediately preceding pre-
fix. Therefore it is more sensitive to
sudden changes in the input  data
than the realm compression algorithm
which has a history of up to 128 pre-
ceding labels and realms. Thus, it’s
better to optimize the ordering by the
algorithm that is most sensitive to the
input data and it that way gain the
best overall result.

It would be possible to design the Mobile IPv4 mes-
sage extensions in such way that optimal ordering of
both prefixes and realms were possible. However, this
would imply increase in extension header overhead,
which would effectively void the slightly better gains in
compression efficiency. Furthermore, the message ex-
tension handling would complicate as two distinct sets
of data should be kept in memory until the decompres-
sion has completed in order to allow merging of prefix
and realm information.

G) IPv6 prefix compression considerations
As stated in Section 3.B-2, IPv6 network prefixes

have certain differences to IPv4 network prefixes,
which affects test case planning. Furthermore, certain
lessons from IPv4 tests could be taken into account.

Since one of IPv6’s goals is simplifying routing tab-
les and preventing fragmentation of IPv6 address space,
the BGP table for IPv6 is not such a good source for
real-world network prefix allocation, as routing strate-
gies prefer to have only Provider Aggregated (PA) add-
resses to appear in global routing tables [16]. In IPv4,
Provider Independent(PI) addresses assigned to orga-
nizations are widely used and thus appear in global BGP
tables, but they are not considered a scalable solution
for IPv6 multihoming [17]. The BGP table for IPv6 thus
shows only aggregated address spaces allocated for ser-
vice providers – the subnetting of the address space is
not visible. 

IPv6 deployment is still in early phases, thus no “best
practices” based on operational experience have emer-
ged. There are a number of IPv6 related recommenda-
tions and guidelines for various cellular networks pro-
duced for example by IETF. These recommendations
mainly concern what is the link model of certain cellu-
lar technology, how it shows to the IPv6 stack, what is
the recommended addressing for the link model and
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Figure 8.  
Results of combined prefix and realm compression



so on [18,19]. One particularly interesting point regard-
ing addressing is that in certain cases, IETF has recom-
mended the use of a separate /64 network prefix for
each user (or rather mobile host), even if the network
contains only a single host. This addressing model has
actually been adopted by all major cellular macro net-
works such as WiMAX and 3GPP.

Also, in more traditional environments, the allocat-
ed prefix sizes for a site can be anything from /32 to /64,
although the most common allocations appear to be /48,
as recommended by the specifications. However, due
to the static-sized “host portion”, for optimal allocation
the prefix size per a site should not be concerned with
number of hosts, but number of individual sub-networks.
Thus a site with three networks should be allocated a
/62. However, an ISP may choose a more relaxed allo-
cation posture and e.g. allocate a /56 or even /48 even
though only fraction of the possible subnets will be us-
ed.

For IPv6 prefixes, we replicated same test cases as
we did with IPv4: 10, 500 and 5000 prefixes, with vary-
ing prefix lengths around /48 (comparable to IPv4’s /24).
Additional cases stem from the mentioned IPv6’s add-
ress allocation characteristics: Due to the abundance
of address space, the prefix lengths might not be fine-
tuned to match the needs and even allocated in a lazy
fashion. Thus, we added the case where the prefix lengths
vary even more, up to 32 bits (causing prefix lengths from
/32 to /64 to be generated). 

As stated in Section 3.C-1, we also checked the pos-
sibility to use dictionary-based algorithm, based on our
realm compression work, to compress prefixes. This was
also tested with each case.

H) IPv6 network prefix compression results
As stated earlier, the IPv6 work was only commenc-

ed as IPv4 work had been completed. Therefore, some
specific test cases could be omitted from the start,
namely omitting any considerations for the number of
Mobile Routers – as with IPv4 prefixes, these would on-
ly increase the payload by constant amount
each. As with IPv4, a baseline with no com-
pression needed to be established. Affect-
ing considerations for valid baseline is the
“zero compression” for addresses mentio-
ned in IPv6 specifications [7]. 

Although compressing the
largest block of zeroes in an
address is beneficial, the app-
roach is purely for human-re-
adable text notation. The net-
work equipment sti l l  treats
IPv6 addresses as 128-bit num-
bers, even if they primarily
consist of zeroes. From signal-
ing perspective, however, we
are already utilizing zero com-
pression – tail-dropping zeroes
that exceed prefix length.

While a full IPv6 address is 128 bits (16 octets), the
latter 8 octets are never considered to be part of a pre-
fix. Thus, instead of considering “uncompressed” data
to consist of full 128-bit IPv6 addresses, we are in this
case using a value of 9 octets per prefix, counting 1 oc-
tet for encoding prefix length and 8 octets for the prefix
(highest 64 bits of an IPv6 address). The uncompressed
sizes for various data set sizes are shown in Table 5. 

Table 5.  IPv6 network prefix compression test cases,
uncompressed data sizes

The effect of sequentialness to the compression is
shown in Table 6, in the case where prefix lengths do
not vary. The test case that the table illustrates is func-
tionally identical to the IPv4 Table 3. However, it should
be noted that as the base prefix length of /48 was cho-
sen, it is clear that in random case the compression is
achieved solely because the tail-dropping of zeroes, in
contrast to the IPv4 case where the scarcity of address
space allowed for at least some compression. How-
ever, percentage-wise, the sequential or near-sequen-
tial cases are still impressive. As with IPv4, individual
test cases did not significantly differ from the average
even in extreme cases.

When varying prefix lengths, things get more inter-
esting. In all cases, the results seem to get better with
500 prefixes than with 10 prefixes, implying that the al-
gorithms effectiveness increases with larger data sets
as effect of encoded Master Prefix decreases. In the cas-
es where there sequence has gaps, the efficiency wors-
ens the greater the variance in prefix sizes is, which is

Space-efficient signaling scheme...

VOLUME LXV. • 2010/III 43

Table 7.  Effect of varying prefix lengths on compression

Table 6.  
Effect of IPv6 prefix sequence to compression.

Percentages in parenthesis are the remaining 
data compared to uncompressed data. 



somewhat expected. As before, in the totally random
cases the efficiency depends solely on the tail-drop-
ping of zeroes. In random cases, space consumed is
greater than with identical prefix lengths case with smal-
ler variances, but with the greatest variance tail-drop-
ping nearly half of the prefix (for /32’s) kicks in. 

1.Comparison to dictionary based algorithm
As stated in Section 3.C-1, we also tested the fea-

sibility of dictionary-based compression on batches of
IPv6 prefixes. Overall, the results are no better than with
the delta-compression algorithm, and in most cases
worse. For comparison purposes, cases with 5000 pre-
fixes, where any local anomalies have leveled off, are
presented in Table 8. The uncompressed data in this
case is always 45000 bytes.

Table 8.  
Comparison of algorithms in cases with 5000 prefixes

As can be seen, even though the delta-compres-
sion only has a single delta-byte, the dictionary-based
approach has significantly poorer performance, even
in the most optimal case of sequential networks. The
differences are probably stemming from the fact that in
dictionary compression there is no concept of “Master
Prefix” as such – there are number of “Master Prefixes”
in the dictionary, but no implicit one – so master has to
always be explicitly encoded, even if it is simply a single
label. 

5. Conclusions

Although the presented Prefix and Realm compres-
sion algorithms are not designed to provide the most
efficient compression factor possible, considering
their simplicity and the specific application they per-
form remarkably well. Our generated test-material also
appears to be accurate representation of real-world
networking in Prefix Compression case, at least for
IPv4. 

Prefix and Realm Compression algorithms present-
ed allow for a simple and efficient way to transmit pre-
fix and realm information over standard Mobile IPv4
signaling messages. The effectiveness depends on the
order the items are fed to the algorithm; We conclude
that optimal prefix ordering should be prioritized over
realm ordering. The use cases also support this app-
roach, as number of realms is usually lower than the
number of prefixes. On a typical case, we were able
to compress the data to approximately 40% of original
size. 

When extending the prefix compression algorithm to
IPv6, it scales surprisingly well provided that the net-
work address allocation strategy conserves address-
es. Within a single organization this can well be the case.
If address space is used in a more erratic fashion, the
efficiency suffers. 

While these algorithms provide a quick and simple
approach to reduce signaling traffic, a different scheme
might be more desirable for larger networks. However,
this approach can be implemented with relatively low
effort and appears to scale up to several hundred pre-
fixes and realms before even requiring the problemat-
ic fragmentation of signaling PDUs.

6. Future work

The compression algorithms
presented in this paper are
only very basic, simple me-
thods for compressing the
realm and prefix information
according to the specifica-
tion. Optimizing the prefix-
and realm compression or-
der may provide higher gains.

Areas to improve is the significance of Mobile Router
compression order; Also, the Mobile Router address it-
self might be eligible for compression. In case of IPv6,
it may also be possible to add variable number of delta
octets for added benefit, if prefix length can somehow
be more efficiently encoded. Using relative prefix lengths
might be a possibility, since it’s quite likely that prefix
length variation will be limited. 

For realm compression algorithm, a more intelligent
label and suffix replacement algorithm instead of a
complete dictionary reset would most probably better
the realm compression significantly. 
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