
1. Introduction

Prosody or supra-segmental features are integrant parts
of human speech, they provide cues for the listener to
understand the meaning by segmenting the speech
flow, by emphasizing the important or new information,
etc. Moreover, prosody carries sentence mood (modali-
ty) and allows the speaker to express emotions, which
are embedded acoustically into the speech utterance.

From the point of view of speech technology, high
quality speech synthesis would be impossible without mo-
delling prosody, which means definition of the proper
intonation, stress and logical segmentation. In speech re-
cognition, however, prosody was not addressed as an
information source for a long time, even if supra-seg-
mental features provide not only segmentation informa-
tion or some representation of nuances in the mean-
ing, but they might by themselves carry information not
contained in any other speech related feature. Auto-
matic speech recognizers should exploit this information
source in order to ensure some redundancy for speech
decoding and also to catch information which would be
lost otherwise. For example, automatic classification of
sentence modality can be crucial in several speech tech-
nology based information retrieval systems, hence se-
veral sentences can be composed from identical word
chains, the meaning being still different because of the
differing sentence mood [1] (question or statement, for
example). This is even more important if  – like in Hunga-
rian – the subject-predicate inversion does not appear
to predict syntactically the sentence modality. In tradi-
tional statistical speech recognition, sentence modality
classification would be impossible in many cases.

Prosody can, however, be very useful also in traditio-
nal speech recognition by providing segmentation in-
formation (boundary detection) about the speech utter-
ance. Boundaries of sentences, clauses, syntagms or
even some word boundaries can be identified based on
supra-segmental features, and the information about the
temporal localization of these boundaries can help re-
duce searching space during the decoding process by

removing or penalizing hypotheses not fitting the de-
termined prosodic pattern. Searching space reduction
means more robust (more accurate) and faster recog-
nition, recognition speed being one of the critical factor
when treating agglutinating languages like Hungarian,
Finnish, Turkish, etc. in systems, if real time operation is
a basic requirement.

Prosody can also help syntactical and semantic ana-
lysis [3] and can predict information-rich segments of
speech by detecting stress.

Prosodic features – even if they have not became in-
tegral parts of speech recognizers yet – were examined
and exploited by several research groups, mainly for Eng-
lish and German languages. Veilleux and Ostendorf ela-
borated an algorithm rescoring N-best lattices based on
prosodic information [10]. N-best lattices are graphs re-
presenting recognition hypotheses, each arc having an
associated score which functions as a weight, calculated
from acoustic and linguistic analysis of the input speech.
Based on prosodic information and analysis, these scores
can be modified, this is called N-best rescoring. Indeed,
it has the same effect as if a prosodic analyser module
added his own scores to the acoustic and linguistic ones.
The final recognition result is given as the path having
the highest score (the most probable path) through the
lattice. A similar work was presented for German lan-
guage in [2]. 

Gallwitz et al. developed an integrated speech re-
cognizer [1], treating and exploiting “traditional” acoustic
and prosodic-acoustic features in parallel. The authors
of the present article have also examined the use of pro-
sody in speech recognition [12].

2. Extracting acoustic-prosodic 
information from speech

For representation of prosody, fundamental frequency
(F0), energy level and time course are measurable. Bas-
ed on our earlier analysis reported in [8], F0 and energy
were found to be characteristic when considering em-
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phasis detection. The extraction of prosodic information
is performed using the Snack package of KTH [7]. The
extraction of F0 is done by AMDF method using a 25 ms
long window. The frame rate is set to 10 ms. The obtain-
ed F0 contour was firstly filtered with our anti-octave jump
tool. This tool eliminates frequency halving and doub-
ling, and also cuts F0 values associated to the first and
last frames of each voiced speech segment. This was fol-
lowed by a smoothing with a 5 point mean filter (5 points
cover a window of about 50 ms) and then the log val-
ues of F0 were taken, which were linearly interpolated.
During the interpolation, two restrictions must be fulfilled.
Firstly, interpolation should not affect pauses in F0 lon-
ger than 250 ms; secondly, interpolation should be omit-
ted if the initial value of F0 after an F0-gap higher than
a threshold value. This threshold value depends on the
last measured F0 values and equals the 110% of the
average F0 value of the three last voiced frames before
the gap (unvoiced period).

These restrictions affecting the interpolation were
found necessary because an unvoiced period of length
more than 250 ms is likely to be a silence, which should
also be detected. On the other hand, interpolation of such
a long period would yield only a broad approximation.
The reason for the maximal rise criteria of 10% for F0
can be explained in the same manner: firstly a silence
(including a breath) is likely, secondly, emphasis is ex-
pected to produce also such a rise which should not be
smoothed by the interpolation. The threshold values to
trigger interpolation were determined empirically. An au-
tomatic algorithm for the determination of these values
based on speaker specific variables (such as speech or
articulation rate, F0 dynamic range, etc.) would also be
of interest in the future, but this problem is not issued
in the current article. 

Energy level values were also extracted using the
Snack package, the window size (25 ms) and frame rate
(10 ms) were identical to those applied for F0. Energy
contour was then filtered by a mean filter. Unlike F0, ener-
gy level is a continuous variable, so interpolation is not
necessary.

After feature extraction and basic shape condition-
ing described above, delta and acceleration coefficients
are appended to both F0 and intensity streams. These
coefficients are computed with a regression-based for-
mula (1). The regression is performed in 3 different steps
with increasing regression window length: firstly with a
window of ±10 frames, secondly with a window of ±25
frames and finally, a window of ±50 frames is used (W
in equation (1)). This means that the final feature vec-
tor consists of 14 elements (original F0 and
intensity data + 3-3 delta + 3-3 acceleration
components for both of them). 

The formula applied was [9]:

(1)

where dt is the delta coefficient at time t ct-i and ct-i
are coefficients from the stream to be derivated, W is
the window length given in the number of frames.

3. Using the prosodic information 
in the speech recognition process

Prosodic information is used to obtain a broad segmen-
tation of the speech on sentence, clause, syntagm and
word boundaries. Feeding this information into the speech
recognizer, we except a higher accuracy and the imple-
mentation of functions presented in the introduction.

Our algorithm is based on the fact that stress in Hun-
garian is fixed [2]: if a word is stressed, stress is produ-
ced on the first syllable. This makes it possible to handle
prosodic information without knowing the underlying word
and phoneme sequence. Of course, the final aim is to in-
tegrate the processing of phoneme characteristic spect-
ral and prosody affected syntactical information in the
speech recognizer.

3.1 Training of an automatic prosodic segmenter
The prosodic segmentation is based on the intona-

tion shape of individual stressed speech segments, se-
parated on word boundaries. As a by-product of this re-
cognition, the temporal location of these boundaries is
also available. Boundaries are expected to occur on word
boundaries, some of which can also be syntagm and/or
clause and/or sentence boundaries at the same time.
Please note that intonation now is defined in a more de-
tailed interval than one sentence, as the intonation of
the sentence is further split into intonationally coherent
segments, so that they coincide with stress and hence
by word boundaries. Further in the article, intonation is
always regarded as some type of “sentence sub-intona-
tion”.

When determining the set of intonation types, a cru-
cial step is to define classes which are well distinguish-
able and cover all frequent intonation patterns. To ac-
complish this, only 6 types of intonation patterns were de-
fined. Silence is the 7th class. The used intonation pat-
tern are listed in Table 1.

For training the prosodic segmenter, training samp-
les were selected from Hungarian BABEL speech data-
base [6] (22 speakers, 1600 sentences). This material
was segmented based on intonation patterns shown in
Table 1. An initial hand-labelling was then extended to
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Table 1.  
Intonation patterns used for prosodic segmentation



a computer aided segmentation using a primitive pro-
sodic segmenter trained on hand-labelled data. Hand-
labelling was performed relying on F0 and energy con-
tour and subjective impression after listening.

The prosodic segmenter itself is a Markov-model bas-
ed system whose structure is very close to standard HMM
speech recognizers. The 14 dimensional acoustic-proso-
dic frames are calculated every 10 ms. The number of
states is 11 (after optimization) for each intonation pattern
class, the linear HMM models were implemented using
the HTK package [9].

3.2 Prosodic segmentation process
Automatic prosodic segmentation is carried out using

the same algorithms as in speech recognition: first, the
acoustic pre-processing is performed, in our case, this
is a prosodic-acoustic pre-processing as described in
Section 2; then in the decoding stage, Viterbi algorithm
is used to obtain the most probable intonation pattern
sequence. Hence we use only 7 different pattern classes,
and prosodic-acoustic observation vectors are only 14 di-
mensional and 1 or 2 Gaussians are sufficient for acous-
tic-prosodic modelling, the decoding process is very fast.

Similarly to a language model in speech recognition,
a prosodic grammar is introduced for prosodic segmen-
tation, which specifies the acceptable intonation pattern
sequences. This prosodic grammar is relatively severe,
but we found empirically that this improves significantly
prosodic segmentation performance, while the number
of cases where an error occurs due to insufficient gene-
ralization capabilities of the prosodic grammar is very low. 

The prosodic grammar is given as (using notations
from HTK Book [9], p.163):

(2)

Here, ‘<>’ symbol pair refers to one or more, ‘{}’ sym-
bol pair to zero or more repetitions. The ‘|’ symbol de-
notes alternatives, the ‘[ ]’ pair encloses optional events.
This proto-sequence is interpreted as the prosodic mo-
del of a sentence built from intonation patterns.

As a by-product of prosodic pattern alignment, the
start and ending times of intonation pattern are also cal-
culated. The example shown in Fig. 1 illustrates the re-
sult of the prosodic segmentation process. 

3.3 Integration of the prosodic segmenter into 
the speech recognizer

The output of the prosodic segmenter can be used in
speech recognizers to obtain more accurate results and
to reduce the searching space. Speech recognizers usu-
ally construct a graph (lattice) which specifies the pos-
sible outcomes (hypotheses) of the recognition process.
Each arc in the graph has its own associated scores
(weights) based on a calculation of acoustic and linguis-
tic likelihoods given the input speech signal. 

These scores can be re-evaluated (rescoring) with the
prosodic information, and so the final recognition result
(text output) takes into account prosodic characteristics
of the speech. The rescored lattice then goes through
the same parsing process as in a standard speech recog-
nizer. 

Using prosody for the improvement...
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Figure 1.  Result of prosodic segmentation 
for the Hungarian sentence “Az elôzô vizsgálattal összehasonlítva a choledochus most 11 mil l iméteres...”  

Bounds 
in the figure from
the top to down
represent 
spectrogram (1),
waveform (2), 
interpolated F0 (3),
energy (4), 
prosodic 
segmentation (5)
and underlying
word sequence (6).



The general recognition process with prosodic module
is illustrated in Fig. 2.

3.4 Rescoring of N-best lattices
As briefly shown earlier, rescoring of N-best lattices

is based on prosodic segmentation.  The basic idea is
that words or word chains (all recoverable from the N-
best lattice) whose syntactical boundaries match well
the prosodic structure defined by the prosodic seg-
mentation should be promoted, this means the
increase of their associated scores. Similarly, if the tem-
poral characteristics found in the lattice do not fit the
prosodic segmentation, the scores can be decreased.

However, the prosodic segmentation might also con-
tain some errors. In spontaneous speech, several charac-
teristic phenomena can lead to even higher prosodic
segmentation error rates: mispronounciations, self-cor-
rections, altered prosody or intensive emotions can all
disturb the operation of automatic prosodic segmenta-
tion. We have already presented a detailed error analy-
sis of the prosodic segmentation in our earlier work [8],
now it is sufficient to remember that prosodically pre-
dicted boundaries should also be treated carefully when
performing lattice rescoring.

As prosodic information is available in the supra-seg-
mental domain, its time resolution is broader than that
of the word or phoneme boundaries predicted by the
speech recognizer itself. To illustrate this, let’s have a
look at a final unvoiced fricative of a word: our reference
point in prosody is always the last voiced sound (vowel),
this uncertainty about F0 is than around the length of
a phoneme. 

To overcome such difficulties, the locations of syn-
tactic (sentence, phrase, syntagm or word) boundaries
(tB) are transformed to intervals to allow some ∆T time
shift when aligning prosodic segmentation to the lattice.
Within this interval, the boundary likelihood (LB) is the
highest in the middle and is decreasing towards the li-
mits as defined by:

where A and C are constants. (In our experiments to
be presented in Section 4, ∆T was set to 10 frames,
which equal 100 ms.) The cosine function was chosen
for its simplicity, as it is required that the point to inter-
val transform function has a flat maximum at tB and de-
creases towards the limits of the ∆T interval.

The N-best lattice rescoring is then performed as
follows. Each edge in the lattice has a word or a word
chain associated (with a combined acoustic and linguis-
tic score) and each node has its associated timestamp
corresponding to the start and ending times of the word
(chain) defined by the edges. A prosodic score is calcu-
lated based on the LB curve, which is the higher if the
actual node is the closer (see also Equation 3):

(4)

where tstart is the timestamp of the start node of the
word (chain) and tend corresponds to the timestamp of
the end node. wa and wb are weights.

Hereafter, LB(ti) is summed for each frame i of the
word (chain) – except the first and last k ones, where ti
is the time index of the actual frame:

(5)

where N is the total number of frames associated to
the word (chain), k =∆T=100 ms.

The new Screscored score of the edge (and so of the
word (chain)) is:

(6)
where
Scorig is the original score, wO and wP are weights.

4. Experiment: integrating the prosodic
segmenter into an ultrasonography
speech recognizer

This section presents an experiment in which the pro-
sodic segmenter functioned as part of a speech recog-
nizer. The integration of the prosodic segmenter into
the speech recognizer was carried out as presented in
Section 3.3, the operation of the system was the same
described in Section 3.4.

The speech recognizer was a Hungarian language,
continuous speech recognizer with a 4000 word abdo-
minal ultrasonography dictionary and a corresponding
bi-gram language model. This latter was binarized, so it
reflected only whether a word sequence was grammati-
cally allowed or forbidden. This reduction was used in
order to test the impact that prosodic information can
add to speech recognition. However, in large vocabulary
speech recognizers such a language model simplifica-
tion can be useful, as the creation of a language model
which covers representatively the application domain is
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Figure 2. 
Structure of a speech recognizer
with prosodic module

(3)



very time and money consuming, mainly for agglutinating
languages – like Hungarian –, where even a relatively
close application domain needs a larger vocabulary due
to the several inflected forms of basic words.

The ultrasonography speech recognizer was imple-
mented in HTK environment, using the “classical” 39
MFC coefficients, 32 Gaussian mixtures for each pho-
neme state and 10 ms frame rate. For training the 37
acoustic phoneme models, approx. 8 hours of speech
was used form MRBA [11] database. The training cor-
pus was segmented on phoneme level.

We integrated the prosodic segmenter into this re-
cognizer in order to analyse recognition performance.
The weights in equations (4) and (6) were set as follows:
wa=0,5, wb=0,5, wO=1, wP=2,5.

4.1 Results
The testing was carried out on a set of 20 medical

reports in the domain of abdominal ultrasonography. (A
report contains approx 10 to 20 sentences.) The base-
line and the integrated systems worked in an identical
environment (same conditions, same recorded reports).
Results are presented in Table 2. Out of 20, 6 medical
reports were representatively selected to be presented
in Table 2 in order to allow deeper analysis of results.
The overall relative increase in the number of correctly
recognized words was 3.82% for the whole test set.  

The relative change in the number of correctly recog-
nized words varies from report to report. In case of re-
port ID 03, the relative improvement was over 10%, how-
ever, performance might be the same (ID 08) or even
worse (ID 16) in the integrated prosodic segmenter sys-
tem than in the baseline system. Further investigating
each medical report and their prosodic segmentation, it
was found that a decrease in the performance of the
integrated system compared to the baseline one was
caused by the errors of the prosodic segmenter, which
can be misled by a less proper pronunciation in terms
of supra-segmental features, or the error of the pitch
detector algorithm can also lead to false boundary de-
tection (prosodic segmentation). 

Pitch detectors are sensible to hoarsed (glottalized)
speech, some errors were also caused by this phenome-
non. On the other hand, reports which were correctly ut-

tered concerning prosody, show a higher improvement
compared to the baseline system. A prosodically correct
utterance does not require per se professional voicing
skills, a common, prosodically well formed pronunciation
is sufficient.

Please note that in our algorithm, syntactical bound-
aries missed by the prosodic segmenter do not alter re-
cognition performance. Of course, the more syntactic
boundaries the prosodic segmentation reveals, the more
performance improvement one can expect. Prosodic seg-
mentation will never locate all of the word boundaries
within the speech based solely on supra-segmental fea-
tures, such a task would exceed even humans’ capabil-
ities. 

This is why we used rather the syntactical boundary
expression through the article instead of word boundary,
but note also that a syntactical boundary is always a
word boundary. We regard as proved that word bound-
ary detection based on prosodic features can improve
speech recognition performance.

As a general remark, we think that prosodic segmen-
tation is not always as accurate in the temporal domain
and in its resolution capabilities as it would be the ideal
one to locate syntactic boundaries. However, this prob-
lem can be solved by tracking of the phoneme sequence
which would allow a compensation of the prosodic struc-
ture in case of necessity. (Of course, tracking in speech
recognition is always back-tracking with some delay.)
For example, we have mentioned in Section 3.4 that un-
voiced phonemes at the end of words can evoke an un-
certainness concerning the F0 curve. Such a problem
could be more efficiently treated if we knew the under-
lying phoneme structure or at least if we calculated some
confidence of the prosodic segmentation based on pho-
neme context. We are planning to extend our research
in this direction in the future. 

5. Summary

Our article addressed the use of supra-segmental (or in
other words prosodic) features in speech recognition.
We have presented a prosodic segmenter, which aligns
syntactical unit assigned intonation patterns or si-
lence to the speech signal. Integrated into an automa-
tic speech recognizer, the prosodic segmenter is used
to locate the boundaries of syntactical units, which are

also word boundaries. At these boundaries,
a prosodic score can be joined by N-best re-
scoring to the acoustic and linguistic scores
available in the speech recognizers. Accord-
ing to our experiments, prosody exploited in
this way improves speech recognition perfor-
mance (and can help the place punctuation
marks as well). 

We think that the developed prosodic seg-
menter can also be of interest in natural lan-
guage processing tools, like syntactic analy-
zers.

Using prosody for the improvement...
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Table 2. 
Ratio of correctly recognized words 
with baseline system vs. integrated system
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