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1. Introduction

In this kind of environment a distributed architecture be-
comes necessary for the voluntary cooperation of auto-
nomous networks, which controls the cooperations [3].
No central confidence of infrastructure is to be assumed.

Promise theory is a graph theoretical framework,
which simplifies the understanding of complex relation-
ships in a network environment that requires compli-
ance with diverse restrictions [3], [4]. According to the
basic idea, fully autonomous nodes connect with each
other through promises. The cooperative nodes organize
groups. Every single promise implies a restriction on the
behavior of the promising node.

In large scale distributed networks the components
of the network share their services and network-man-
agement functions with each other. However, it is not a
good choice for the nodes to share all their services
with the others.

Each network node needs services from other nodes.
If a node only requires services, but does not serve the
requests of the other nodes, that means that this node
behaves in a selfish way. In order to terminate such
behavior in the network and motivate the nodes to co-
operate, one may use several kinds of techniques. The
principle of these solutions is that one rewards the gen-
erous nodes and punishes the selfish ones. If a node
receives a reward, it is more likely that its requests will
be served by other nodes. If a node receives a pun-
ishment, it will be less likely that such node is served.
The game theory approach is the most suitable way to
model the above described method. The most fitting
game for this model is the general prisoner’s dilemma.
In order to make a decision whether or not to serve a
certain service request, the nodes must store some
kind of information about the behavior of the other
nodes to make the system work.

Behavioral information and history can be stored
basically in two ways: by shared history or by private
histories [5]. The two storage methods have different

drawbacks, in case of storage in a commonly used area
a node may send false recommendation related to an-
other node, that is to say it lies about another node
and this can ruin the cooperation. To store information
in a common field a distributed data-storage method is
also required, e.g., by way of distributed hash tables.
In case of a large number of nodes individually stored
history results in infeasible memory requirements, so
the above mentioned method can be used only to a
limited extent.

Description of resource sharing by game theory mo-
dels is a widely researched field, especially since the P2P
file-distributed networks have become popular. Several
approaches have been developed to motivate the par-
ticipants of the network to share their resources. In
these reputation-based incentive systems the nodes
have a utility value, which they want to increase and
maximize during their operation. The calculation of the
utility value is based on the resource sharing level of
the node and the extent of the utilization of other nodes.
One of the most comprehensive studies in this field was
conducted by Ion Stoica and his team [5], but many
other valuable publications were made on this topic.
These researches differ in several ways, e.g., the type
of the game theory used to analyze the system. Ion
Stoica and his team used an asymmetric model with
two participants, while for example Philippe Golle con-
ducted his analysis with a multi-agent reinforcement
learning model [6].

Existing game theoretic descriptions are based on
P2P principle, i.e., any participant may contact any other
participant to request or to perform a service. The solu-
tion, described in this paper, differs from these app-
roaches in the fact that a topological network is used to
deliver service interactions as the chain of physical,
node-to-node interactions. As an example, in ambient
networks [1] the nodes have only a limited coverage
area, so they can communicate directly only with their
neighbours. Consequently, routing is required in the
network, and a service request goes through several
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nodes. Therefore, upon a service request three differ-
ent kinds of nodes participating in the process can be
distinguished: an initiator node, which requests the ser-
vice, a target node, from which the service is request-
ed and optionally some transport nodes, which transmit
the requests and the answers. Naturally, a node may
request service from its direct neighbor. In this case the
transport nodes are left out.

2. System Model

Game theory is a branch of mathematics trying to ans-
wer the question: which behavior is reasonable in a sit-
uation when the results and effects of a participant’s
decisions are also affected by other participants’ deci-
sions. The description of a game basically requires the
specification of three elements: the players, the strate-
gies and the payments, or in other word, payoffs. 

Players are the participants of the game, who want
to maximize their payoffs. By strategy we mean the
behavior of the players, namely, the kind of decisions
the players may come to. By payoff we mean the play-
er’s utility diagram, the value, which may be recorded to
the player’s credit at the end of the game. This value
depends on the strategy the player has chosen and
the strategies of other players. Since the player is ratio-
nal, he wishes this utility value to be as high as possi-
ble. To reach this, the player has to consider the other
players’ decisions or decision options, as well as his
own payoffs in relation to the above. There are sever-
al kinds and classifications of the games, e.g., normal
form or extensive form games, symmetrical or asym-
metrical, zero sum or non-zero sum games. The easiest
way to specify a normal form game is the payoff matrix.
This matrix shows the players, the strategies and the
payoffs.

In order to understand the operation of the system
first we should discuss the prisoner’s dilemma. There
are many versions of this game. The basic idea is that
two prisoners, suspected of a crime are imprisoned in

separate cells. They have the same options: if a pris-
oner testifies against the other he will be released and
the other is punished to 10 years’ imprisonment. If nei-
ther of them testifies, they receive 6 months each, if
both of them testify, they get 6 years each. The pris-
oners must not communicate with each other hence
they are unable to cooperate (non-cooperative game).
Thus the duration of the punishment may be consid-
ered as a kind of negative utility we wish to minimize.
The payoff matrix of the above described game is illus-
trated in Table 1 (in a cell the first number is the payoff
of the Player 1 /utility/ and the second number belongs
to the Player 2).

The difference between the original and the gener-
alized game is that several restrictions and rules were
defined for the payoff values. Based on the above var-
ious prisoner’s dilemma games may be described which
fulfill these rules. We do not discuss these in details.

For asymmetric games, like a client-server interac-
tion, the classical prisoner-dilemma game can be ex-
tended as shown in Table 2. The numbers in Table 2
indicate the utility and payoffs of certain players. This
game is played many times by the participants of the
network and the scores are cumulated. In the very case
of Table 2, when a node requests a service from anoth-
er node,  two events can occur: the node either serves
the client node’s request, in which case the server
node receives -1 point and the client receives 7 points,
or the server rejects the request, so each of them re-
ceive 0 points.

The players may have 3 different strategies: always
cooperate, always defeat (never cooperative) and to
be reciprocative. The first strategy means that the node
fulfils every inbound request unconditionally. The sec-
ond strategy is the opposite of the first: the node never
fulfils any request.

The information about the behavior of the request-
ing nodes stored by the nodes becomes relevant in the
reciprocative strategy. Using this strategy, the decision
of a node whether to serve the requesting node or not,
is based on some stored information. During the pro-
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Table 1.
Payoff matrix - Classical prisoner’s di lemma game

Table 2.
Payoff matrix for the game played by nodes



cedure the nodes collect their scores (or loose them)
game by game. Each node compiles statistics about
which strategy has been the most profitable for them.
If a node considers that another strategy would be
more profitable than the one it currently uses, it chang-
es strategy. In this case the identifier of the node also
changes, so the information about this node stored by
the others loses its relevance. (A traitorous node is an
exception to this rule, since it keeps its identifier even
if it changes strategy. This issue will be discussed later.) 

A node may increase its utility not only by serving,
but also transferring requests. The value of transferring
requests is identical to the value of serving a request.
For the requesting node, it is practically transparent who
provides the service. The transport of the services is
implemented in a way of a routing mechanism. The
nodes are aware of the routes through which they can
reach other nodes, thus they know which of their neigh-
bors they have to turn to first if they request service
from a specific node.

The following question may arise: why would a serv-
er node perform services upon a client’s request if this
results in a negative score for such a node? The ans-
wer lies behind the previously described private history
stored by the nodes. If a node does not perform ser-
vices to the other nodes, then sooner or later its re-
quests will be declined as well, so it would be unable to
collect scores. This means that in the long term it would
not profit from such operation. Performing or not per-
forming services also depends on the relationship of
the serving node with other nodes, since as it will be sub-
sequently shown, in certain cases a node may prefer
the non-cooperative strategy to the other strategies.

Additionally, a traitorous type of node has also been
introduced into the system with the following operation:
When this kind of node changes strategy its identifier
remains unchanged and the information stored by the
other nodes about it also remains valid. Theoretically, a
node like this may cooperate with every other node in
the first part of the operation, while it refuses to serve
any requests in the second part, since due to the high
score collected in the first part its requests will most like-
ly be served by the other nodes, which conduct recip-
rocative strategy. We have examined the operation of
the system also in the presence of such of nodes.

During the operation of the system the nodes also
store information on the nodes they had previous con-
nections with. The nodes “remember” the clients which
had requested services from them. They use this mem-
ory when they act as client nodes and they are more
likely to request services from those nodes which had
already requested services from them. Thus, a node
can return a service by performing a request for the
other node. 

Due to this principle, during the simulation the be-
havior of the network converges to a relatively stable
condition, and although some strategy changes may
occur at the last stages of the simulation, no drastic u-
turns take place, thus the system becomes stable.

3. Numerical Results

The examination of the above described system was
conducted by way of simulation. The simulation was
divided into cycles and every node requested service
from another node in each cycle, that is, they played
the above described game. The game goes through
the entire service path, that is, the path on which the
performance of services takes place between the client
and server nodes. Each simulation contains 1,000 cyc-
les. The examination of the operation of the system
was conducted with respect to several cases. 

The storing method of histories stored about the
nodes was examined both from short-term and long-
term respect. If we store such information only for a
short-term, this means, that a node may quickly “white-
wash” itself, so the system is forgiving, however this be-
havior might be disadvantageous for the other nodes
subsequently. However the storage of long-term histo-
ry requires extra memory and for satisfactory operation
an efficient search must be implemented as well. These
two cases we examined in relation to private and shared
history.

During the simulation we examined the operation of
a network containing 100 nodes. The nodes were ran-
domly positioned, so the topology developed in this
way is also random. We examined which strategy is the
most profitable for a certain node. The use of a certain
strategy depends on several circumstances, e.g., on
the position of the node in the network (whether it has
a few or a lot of neighbours) or the strategies its neigh-
bours use. At the beginning of the simulation the stra-
tegies were randomly distributed between the nodes in
the same proportion, thus 1/3 of the nodes were coop-
erative, 1/3 were defective (non-cooperative) and 1/3
played the reciprocative strategy. In general it can be
established that in most cases the cooperative and the
reciprocative strategies were the most profitable ones.
However, in certain cases, in some parts of the network
the non-cooperative behavior became more popular.
The system acted differently if the presence of traitor-
ous nodes were also allowed, the proportion of which
was set to 25%.

During the simulation the network approached to a
stable state. This means that the majority of the nodes
were not interested in strategy change and the fre-
quency of strategy changes decreased in the entire
network. The diagrams show the number of nodes that
use a certain strategy in a certain simulation cycle, but
it does not indicate which specific nodes use such stra-
tegy, so we cannot find out if the strategy was used by
the same nodes or some others. To demonstrate the
aforementioned characteristics, we prepared a network
topology in each simulation cycle, which indicates each
strategy by different color. 

By examining these topologies, we came to the con-
clusion that the bulk strategy changes took place at the
beginning of the simulation and at further stages no
substantial changes happened. The examination of this
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process provides an opportunity to focus on the distri-
bution of the strategies depending on position within
the topology.

Fig. 1. shows the topology reached by the end of
the simulation in case of various simulation scenarios.
It is obvious that in the case of the presence of traitor-
ous nodes, the number of the non-cooperative nodes
is larger than the number of defective nodes if only nor-
mal operating nodes are present in the network. It is
worth noticing when the short-term history is used and
some traitorous nodes are present every node be-
haved in a non-cooperative way towards the others
shown at extension of the right-hand side portion of
the graph. Thus, this effect spread over in that part of
the network and such behavior could be observed at
the presence of the traitorous nodes. In those parts of
the network where the nodes are relatively densely
positioned the behavior of the nodes is more or less
the same, however, there are some areas, where, be-
cause of the presence of the traitorous nodes, the
nodes become less cooperative.

Fig. 2. shows the distribution of the nodes using spe-
cific strategies. It can be seen that, if traitorous nodes
are present, the distribution of the nodes is more un-
steady, the nodes more frequently change strategies.
This effect can be clearly seen also when comparing

the solutions using short-term and long-term history. In
accordance with previous diagram it can be observed
that how many nodes followed the various strategies
by the end of the simulation. At the presence of the
traitorous nodes the difference is clearly noticeable, by
the end of the simulation more nodes used the strate-
gy of never cooperating with the others.

4. Summary

In summary, we may establish that the proposed incen-
tive system is able to motivate the nodes to voluntary
cooperation. In some cases this cooperation is high-
level and the number of the non-cooperative nodes is
insignificant, while in other cases some parts of the net-
work form non-cooperative groups. 

The study of the system may be continued different
ways, e.g., we might examine a specific situation when
the nodes are not steady, but change their positions.
In this case we certainly must provide effective routing
for the nodes to be able to find each other in a quick-
ly changing network. Several studies were made to this
effect, however small but frequent changes the net-
work topology had a significant effect on the nodes’
strategy selection. 
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Figure 1.  Distribution of nodes by strategies in the topology graph



This means, that we may not draw many conclusion
from describing diagrams like the above ones. The stu-
dy of such case constitutes the subject of further re-
search.
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Figure 2.  The numbers of the nodes using the different strategies during the simulation


