
1. Introduction

In our days we have numerous resources available for
running scientific computations, yet in many cases their
usage is not encouraged by an adequate support. Al-
though a large amount of development has been car-
ried out, a researcher has many challenges to face in
order to benefit from a distributed, parallel computa-
tional system.

Our intention is to ease these difficulties by present-
ing the Saleve framework which provides a virtual layer
over the underlying infrastructures for the developer of
a parallel application. Saleve focuses on implementing
a specific type of parallel algorithms called parameter
study programs. The parallel applications developed
using Saleve can be executed on several different dis-
tributed infrastructures without any modification or re-
compilation.

In the next section we give a quick overview of the
parameter study problems and of the EGEE which is
the most important Grid project in the EU. Then we intro-
duce the motivation and objective of Saleve, and we
continue by outlining some details of the operation of
the Saleve system. Finally we give a summary and pre-
sent some future plans.

2. Utilizing the Grid for
parameter study tasks

2.1. Parameter study tasks
In practice, there is frequently a need for an algo-

rithm to be run with hundreds or even thousands of dif-
ferent input parameter values: such tasks are called
parameter studies or parameter scans. In certain cases
the requested result is the set of outputs obtained us-
ing each parameter, but the end result is often acquired
via a final aggregating step. For instance, in an exhaus-
tive optimization this last step is to seek one specific
parameter value. Another simple example is the numer-
ic integration of a non-analytic function over a given do-
main. We can split the domain into non-overlapping sub-

domains which will be used as the input parameter for
the integrating routine, and as the final step we add up
all the integral parts.

The problem of PS emerges in several experimental
sciences, especially in physical simulations but also in
other areas such as high energy physics, astrophysics,
genetics, biomedical research and seismology. Like pa-
rameter studies, it is easy to split into subtasks all the
engineering problems that can be described with ordi-
nary differential equations. Such problems include sta-
tics tasks, like the research project at BME that involves
the planning of reinforced concrete bridge beams using
a parallelizable algorithm similar to PS [1].

The large number of executions, each with different
parameters, would however take very long time when
done sequentially. On the other hand, we should note
that there is no causal relation among the runnings, so
the chronological order of these is arbitrary, and they
can even be done parallel according to the Single Pro-
gram, Multiple Data (SPMD) model [2]. Therefore the
presence of multiple CPUs can be taken advantage of,
either in the form of a multiprocessing system or a clus-
ter of several nodes – and in the best case, we can even
utilize a grid infrastructure for this purpose.

2.2. The current state of Grids
In order to satisfy the rapidly increasing demand for

computing and data storage, the plan for a geograph-
ically distributed network of resources called the grid [3]
emerged more than a decade ago. Since then, several
initiatives all over the world have been launched to im-
plement it.

Among these, Enabling Grids for E-sciencE (EGEE)
[4] is the largest in Europe. It was initially built to pro-
cess data from the sensors of the Large Hadron Colli-
der (LHC) at CERN, Switzerland, but now it has a wide
range of scientific applications, for example in astrophys-
ics, bioinformatics and geophysics. The project brings
together more than 240 institutions from 45 countries
including Hungary. Currently the grid consists of approxi-
mately 41,000 CPUs, can store up to 5 petabytes of data
and can process 100,000 concurrent jobs.

60 VOLUME LXIII. • 2008/1

Saleve: toolkit for developing
parallel Grid applications

PÉTER DÓBÉ, RICHÁRD KÁPOLNAI, IMRE SZEBERÉNYI

Budapest University of Technology and Economics, Centre of Information Technology
{dobe,kapolnai,szebi}@iit.bme.hu

Keywords: Saleve, Grid application development, EGEE, parameter study

We present the Saleve tool, which helps the migration of existing parameter study applications into grid environment. Prog-

rams linked against the Saleve library can be integrated into grids using different middleware systems, so the application

developer need not deal with the technical details of the middleware.

Reviewed

BME participates in EGEE, too, by network activi-
ties and also by providing resources. In our own grid site
called BMEGrid, there are currently 8 quad-core server
machines which execute the jobs submitted into the
grid. Connected to the site, we have a high capacity,
efficient, parallel accessible storage system, the Scal-
able File Share (SFS), which is capable of storing nearly
3 terabytes of data. Our resources are mostly used by
members of the Atlas HEP project and biomedical re-
searchers.

Grid projects focus on facilitating the development of
new applications, thus recruiting more grid users. For this
purpose, portals [1,10], sometimes extended by devel-
opment and workflow management tools [11], or other
environments with complex functionalities [12] can pro-
vide a solution. The Saleve concept differs from these:
using it, parallel applications can be created that are
capable of transferring themselves to the runtime envi-
ronment without separate tools, and besides staying
lightweight, and can be run on a personal computer as
well. The system, just like the aforementioned environ-
ments, is not specific to the application area.

3. Overview of Saleve

3.1. Motivation
Most of the researchers and engineers have pro-

gramming skills, especially in C and Fortran languages,
therefore creating sequential programs for performing
scientific calculations means no obstacle to them. How-
ever, the development of distributed programs running
in parallel requires more advanced knowledge and ex-
perience in programming.

The situation is made even more difficult by the large
number of diverse, rapidly evolving technologies in use.

These include different batch systems like PBS, LSF
and Condor [5]. Although the final goal of grid develop-
ment is a worldwide service that is accessible in a stan-
dardized way, its implementation is expected to delay
several years yet. Currently each grid system has its
own middleware system that is incompatible with the
others. Getting acquainted with all these technologies
and learning to use them in order to solve a general
problem, for example PS, would take away effort from
the real task of research. In addition, it is quite common
that one would like to use an existing program without
radical redesign in case the underlying computing infra-
structure changes. Such change is for example switch-
ing from a single computer to a local cluster, or switch-
ing from the local cluster to the execution on a grid sys-
tem.

3.2. A Proposed Solution
Handling these difficulties is the aim of the Saleve

system, an open source tool to aid the development of
C programs that are capable of running in parallel. Sa-
leve can be used either to make new programs or to
upgrade existing sequentially running ones. The main
goal is to hide the details of the distinct computing tech-
nologies, and to provide an invariant, easy-to-learn me-
thodology to create PS applications that, in addition to
the simple sequential execution, are also able to take
advantage of parallel computing systems.

4. Design of Saleve

4.1. Client-Server Architecture
To understand the operation of Saleve we begin with

the derivation of the Saleve client. For that purpose, let
us consider a traditional, sequential PS application writ-

Toolkit for developing parallel Grid applications

VOLUME LXIII. • 2008/1 61

Figure 1. The features of Saleve

ten in C. From the user’s point of view, the only duty is
that the original program has to be gently transformed
into the Saleve client. First, a more exact structure of
the program should be defined i.e. the following mod-
ules have to separated: the partition of the parameter
space, the calculation over a subdomain and the sum-
mary of the subresults. Finally the resulting source code
has to be linked against the Saleve programming lib-
rary.

The client can be launched to compute the subre-
sults over the subdomains and summarize them. By de-
fault, the running is similar to the original program: the
subresults are computed consecutively, but the client
can be configured to launch parallel jobs locally to fin-
ish faster in a multi-CPU machine. However, the most im-
portant feature of the client is the ability of transmitting
itself and the input to a given Saleve server.

After receiving the executable client binary and its
input data, the Saleve server forwards a new job for
each subdomain to a Grid or to a cluster or simply exe-
cutes it instead of dispatching. We emphasize that the
user is not aware at all which distributed system the
jobs were forwarded to, therefore Saleve provides full
transparency (Fig.1).

The server monitors the submitted jobs, resubmits
them on failure and stores the temporary subresults.
Under this phase the client may disconnect from the
server and later another instance may resume the ses-
sion from a different machine.

The server continuously returns the available sub-
results to connected client. As soon as each subresult
has been returned, the client computes the final result
from the subresults as the user defined.

Fig. 2. illustrates the course of events during the life-
cycle of a task.

4.2. The Architecture of the Server
To meet our main requirements, the server should

support the most popular distributed computing envi-
ronments and, moreover, it should be easy to extend
to operate with a new scheduler or grid middleware.
This approach has led to the split-up of the server com-
ponents into two groups: the components of the first
group serve general purposes which are independent
of any specific computing environment, the second group
contains the components named the plugins.

One of the generic components implements the com-
munication interface based on SOAP. The server pro-
vides web services towards the clients to upload a task
and the input data and to download the subresults. The
web services of Saleve are built on the gSoap [6] im-
plementation. The generic group includes more compo-
nents such as the one responsible for user manage-
ment or job management which are discussed in detail
in [7,8].

The plugins make it possible to the server to coop-
erate with several different infrastructures, in addition,
adapting the server to a new infrastructure would not

HÍRADÁSTECHNIKA

62 VOLUME LXIII. • 2008/1

Figure 2. Execution of a task in Saleve

involve any change in the generic components. For this
reason, a dedicated plugin for every distributed system
handles the envorinment-specific communication (Fig. 3).

Up to present the following plugins have been made:
– executing jobs parallel on the server host,
– submitting jobs to the Condor scheduler [5]

which is widely spread on cluster sites,
– forwarding jobs to the EGEE grid infrastructure

through the gLite middleware.

4.3. Interoperation between the EGEE infrastructure
and Saleve

Saleve supports submitting tasks to the EGEE grid
with the help of the gLite plugin mentioned above. Deve-
loping a new Saleve plugin principally requires knowl-
edge of the interface of the corresponding middleware
or scheduler, does not presume deep experience in Sa-
leve internals.

To create a new plugin, one has to implement an in-
terface where the data management is aided by the Sa-
leve development library. The major challenge is deal-
ing with the authentication issues towards the grid and
the job management rather than using the Saleve lib-
rary. Looking after the grid jobs is essential due to the
instability of the current infrastructures: some jobs may
abort and must be submitted again.

The gLite middleware which is the software engine of
the EGEE infrastructure has adopted certificate-based
authentication and resource-allocation methods where
the permissions of a user are determined by his or her
memberships in virtual organisations (VOs). When a
user wishes to access to a resource e.g. by submitting
a task, a temporary, short range proxy certificate has to
be generated using the long range certificate, has to

be attached to the submitted task and periodically re-
newed. This procedure is useful to protect the long
range certificate if the proxy certification was compro-
mised.

In our current implementation the Saleve server keeps
an own certificate for accessing grid resources directly
thus the server is a member of some virtual organisa-
tion. In this manner the proxy generation and renewal
is completely hidden from the user who cannot tell whet-
her the task has been executed in the EGEE grid or in
a local cluster.

5. Summary

The presented Saleve system aids the development of
parameter study type parallel applications by forming a
transparent abstraction layer above the middleware or
batch systems of the different distributed environments.
Its main advantage is that a slightly modified version of
the legacy application called the Saleve client can be
run without change in several types of runtime environ-
ment and even on the local machine, so it is easy to
develop applications possibly for EGEE, the largest in-
frastructure of Europe, without knowing the technical
details.

Regarding the possible upgrades of the system, we
are going to focus on implementing the dynamic load-
ing and unloading of plugins and a better management
of jobs submitted into the grid. Our plans also include
improving the flexibility of client-server communication
with the help of webstreams. For more information on
the current status of the Saleve project, please visit the
web page [9].

Toolkit for developing parallel Grid applications

VOLUME LXIII. • 2008/1 63

Figure 3. The architecture of Saleve

Acknowledgements

Part of this work was funded by
the Péter Pázmány program (RET-06/2005) of

the National Office for Research and Technology,
and the authors would like to thank EGEE project

(EU INFSO-RI-031688) and
NKFP MEGA (2_009_04) project.

References

[1] D. Pasztuhov, A. Sipos and I. Szeberényi:
Calculating Spatial Deformations of Reinforced
Concrete Bars Using Grid Systems,
MIPRO 2007 – Hypermedia and Grid Systems,
Opatija, Croatia, 2007.
pp.189–194.

[2] P. E. Black:
Algorithms and Theory of Computation Handbook,
CRC Press LLC, U.S. National Institute of
Standards and Technology, 1999.

[3] I. Foster and C. Kesselman:
The Grid 2:
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers Inc., 2003.

[4] EGEE-II Information Sheet, 2007.
http://www.eu-egee.org/sheets/uk/egee-ii.pdf

[5] D. Thain, T. Tannenbaum and M. Livny:
Distributed Computing in Practice:
the Condor Experience, Concurrency and
Computation: Practice and Experience, 2005.
pp.323–356.

[6] R. A. van Engelen and K. Gallivan:
The gSOAP Toolkit for Web Services and
Peer-To-Peer Computing Networks,
In the Proc. of the 2nd IEEE Int. Symposium on
Cluster Computing and the Grid (CCGrid’02),
Berlin, Germany, 2002.
pp.128–135.

[7] Zs. Molnár and I. Szeberényi:
Saleve: simple web-services based environment for
parameter study applications.
In Proc. of the 6th IEEE/ACM International Workshop
on Grid Computing, 2005.
pp.292–295.

[8] P. Dóbé, R. Kápolnai and I. Szeberényi:
Simple grid access for parameter study applications.
In 6th International Conference on Large-Scale
Scientific Computations, Sozopol, 2007. (in press)

[9] Saleve project,
http://egee.ik.bme.hu/saleve/

[10] P. Kacsuk, Z. Farkas and G. Hermann:
Workflow-level parameter study support for
production Grids, Proc. of ICCSA’2007,
Kuala Lumpur, Springer LNCS 4707,
pp.872–885.

[11] P. Kacsuk, G. Dózsa, J. Kovács, R. Lovas, N.
Podhorszki, Z. Balaton and G. Gombás:
P-GRADE: A Grid Programming Environment.

Journal of Grid Computing, Vol. 1, No. 2, 2004.
pp.171–197.

[12] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan,
C. Seragiotto Jr. and H.-L. Truong:
Askalon: a tool set for cluster and Grid computing,
Concurrency and Computation:
Practice and Experience, Vol. 17, 2005.
pp.143–169.

Author

Richárd Kápolnai received his M.Sc. degree in technical informatics from
Budapest University of Technology and Economics (BME), Hungary, in 2006.
His M.Sc. thesis is about designing networks for selfish users. Currently
he is pursuing a Ph.D. degree at the Centre of Information Technology, BME,
in grid systems. He helped develop the Saleve system, and participated in
the 2nd phase in the project EGEE. His research interests include support-
ing grid application development, and mechanism design.

HÍRADÁSTECHNIKA

64 VOLUME LXIII. • 2008/1

