
1. Introduction

It is a widely known fact in connection with microwave
networks that the transmission level is strongly affected
(namely, decreased) by objects or substances located
between any pairs of transmitter and receiver stations,
in the so-called Fresnel-zone. These objects and sub-
stances, simply obstacles, may get into the zone tem-
porally or permanently. Also, they may be artificial or
natural objects, and they might be of meteorological
origin, too, like rain or fog. If unexpected decrease of
the transmission quality is perceived, an alarm or indi-
cation of some action to be immediately done is usual-
ly indicated at the operator screen. While the investi-
gation of the reason of such service degradation by
human staff is a generally successful method for taking
care of the problem, it is far from being the most eco-
nomical solution. In such cases it is reasonable to use
intelligent decision making in the network supervision
system which can autonomously decide from the de-
gree of attenuation and from its time dependent be-
haviour what the original reason of the decrease in the
signal level could be. The system might automatically
recommend the necessary action in order to eliminate
or compensate the unwanted behaviour at the user
interface of the supervision system. 

This paper presents the intelligent module of a net-
work supervision system created in the framework of a
successfully completed National R&D Programme pro-
ject [5]. This module performs intelligent inference ta-
ken from the change of the transmission level (de-
crease values calculated from the signal levels at the
transmitter and receiver end). Such changes are de-
duced from the values read by the sensors of the su-
pervision system. The result of this inference is present-

ed via the Graphical User Interface (GUI) of the system.
Here, we focus only on one issue in this study, namely
on the intelligent recognition of different precipitation
categories that may occur in the temperate continental
climatic zone. 

Different alarm levels, which will be illustrated later
by some examples, can be divided into two categories.
The first one contains hardware failures and functional
decay of the equipment at the microwave stations which
may occur suddenly or gradually during a longer period
of operation time. The system initiates some (human
staff related) maintenance action in such cases. The
second category covers the phenomena when the re-
ceived signal level decreases because of various ob-
stacles gotten into the Fresnel-zone. A typical example
is the setting up of a poster in an urban environment,
which can significantly damage the quality of transmis-
sion between two stations. (This often happens on the
roof of a building, while stations are also located at var-
ious roofs, thus a bigger poster might completely block
the visibility of the two stations from each other.) In such
a case a measure totally different from the previously
mentioned maintenance action is needed, e.g. the re-
location of the transmitter and/or the receiver station will
be necessary. 

Another example for this category of phenomenon
is when in a rural neighbourhood a forest located be-
tween transmitter and receiver stations gets leaves in
the spring. By this the total area of covered cross sec-
tion within the Fresnel zone increases tremendously,
thus decreasing the transmission quality. This phenom-
enon may be compensated by the automatic resetting
of the transmitter performance cyclically and annually.
The previous two examples were typical illustrations for
an artificial and a natural obstacle.
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The scope of problems investigated in our demon-
stration system belongs to the category of meteorolog-
ical phenomena. The separation of the phenomenon
of fading caused by rain/fog and the transmission prob-
lems caused by different obstacles can be done by
recognising the more or less isotropic behaviour of the
decrease of the received signal level occuring in a geo-
graphically closed area. The lack of directionality and
simultaneousity of the decrease are usually good indi-
cators of rainfall in the neighbourhood of a given sta-
tion. Often a group of stations with a number of station
pairs are observed at the same time in order to recog-
nise isotropy. 

It is worth mentioning that these two phenomenon
groups may exceptionally result in a combined effect,
such as when a leafy forest located between the trans-
mitter and receiver stations receives rain that is accu-
mulated on the surface of the leaves, and so, even for
longer period after the rainfall, may cause strong aniso-
tropic fading because of the water drops on the leaves
that act together as thousands of tiny refractors for the
microwave signals. 

Next, the background of the computational intelli-
gence method applied to intelligent decision making is
discussed. In Section 2, the foundations of fuzzy sys-
tems are introduced. Hierarchical fuzzy systems are brief-
ly presented in Section 3. The fuzzy system applied for
the supervision of mobile telecommunication network is
demonstrated in Section 4.

2. Foundations of fuzzy systems

Human reasoning and some other phenomena cannot
be accurately described by two-valued logic. The de-
sire for extending two-valued logic to multiple valued
ones came up long time ago. The basic concept was
that instead of using only the “true” and “false” logical
values, the use of other values between true and false
should also be allowed. There are many statements
that cannot be evaluated as true or false, only their
respective “degree of truth” can be determined. 

This idea led L. A. Zadeh to the creation of fuzzy
logic in 1965 [2]. Nowadays, in computers and in many
areas of life, the classical binary (Aristotlean or Boolean)
logic is used. However, if we want to create more intel-
ligent tools, better results can be
achieved if the behaviour of the
systems is described in a way
that is closer to human thinking.
Fuzzy logic is an extension of the
classical logic. A fuzzy logic vari-
able may assume any value be-
tween 0 and 1. Here, 0 means
that the statement is “totally
false”, while 1 means that it is “to-
tally true”. According to this defi-
nition, the value 0.5 corresponds
to “half true”, and value 0.9 to

“almost true”. The operations of classical logic can also
be extended to fuzzy logic. Based on this concept,
fuzzy sets can be defined, fuzzy rules and fuzzy infer-
ence systems can be created. The next sections give
a brief overview of the basic ideas (for more detailed
description refer to [1]).

2.1. Fuzzy sets
A fuzzy set A defined over a universe of discourse

X is characterised by the so-called membership func-
tion (which is the extension of the characteristic func-
tion of ordinary sets). The membership function µA as-
signs a real value from the closed unit interval to every
element of X describing the degrees for elements x to
which they are belonging to the fuzzy set A:

µA : X → [0,1]

µA unambiguously characterises the fuzzy set A if
the universe of discourse X is also known. In the prac-
tical applications the most commonly used shapes for
membership functions are triangular, trapezoidal, or
sometimes more general piecewise linear (like in the
very first real application by Mamdani [3]) and symmet-
rical or asymmetrical Gaussian. 

In Figure 1 examples for simple attenuation “values”
described by fuzzy sets can be seen. Three categories
are distinguished here, “moderate”, “medium” and “high”.
Obviously these fuzzy values are rather extended inter-
vals which comprise whole sets of concrete values which
are considered to be more or less equivalent from the
point of view of a certain application. Very likely, in an-
other application the number of sets and correspond-
ing labels and the extension of each set will be different.

In this example the shape of the membership func-
tions is trapezoidal. Two important basic definitions need
to be mentioned in connection with fuzzy sets, namely
the support and the core of a fuzzy set. The support of
fuzzy set A is the (ordinary) set of those elements of the
universe which have positive membership value in A: 

supp(A) = {x ∈ X | µA(x)>0}.

The core of A means those elements of the universe
whose membership value is equal to 1, i.e. which belong
to the fuzzy set in the ordinary sense or completely: 

core(A) = {x ∈ X | µA(x)=1}.
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Figure 1.  Attenuation values described by fuzzy sets



The three main set operators union, intersection and
complementation of classical set theory can be extend-
ed to fuzzy sets in several (in fact infinite many) ways.
The most commonly used ones are the standard defini-
tions introduced originally by Zadeh [2], but the so-cal-
led algebraic operators have also some advantageous
properties. The standard complement of fuzzy set A on
a universe X is A

–
, where for each

{x ∈ X : µ
A–
(x) = 1–µA(x).

The standard intersection of fuzzy sets A and B is
given by

while the standard union is

The algebraic intersection can be calculated from

and the algebraic union is defined by

There is no separate definition for the algebraic com-
plementation, moreover, the standard complementation
satisfies De Morgan’s Laws together with the two al-
gebraic operations, just like it does the same with the
standard operations. Such triplets of fuzzy operations
are referred to as De Morgan triplets.

2.2. Fuzzy rules
Fuzzy knowledge bases form the essence of fuzzy

control and decision support. They are constructed from
a set of fuzzy rules. Fuzzy rules can be formulated by
fuzzy sets and linguistic labels using o*-ften natural hu-
man language. In a supervision system for telecommu-
nication networks, e.g. the following rule can be formu-
lated:

“If the decrease of the received signal level is mod-
erate and the elapsed time is short then the precipita-
tion is moderate rainfall.” 

If the membership functions for “moderate”, “short”,
and “moderate rainfall” are exactly defined over the uni-
versal sets “received signal levels”, “time between two
observations” and “amount of precipitation”, then fuzzy
rules are obtained. The general form of a fuzzy rule with
one input and one output dimension is as follows:

R : If x is A then y is B,
where x ∈ X is the input and y ∈ Y is the output vari-

able, X is the universe of discourse for the input and Y
is the universe of discourse for the output variable. A
and B are linguistic labels that are expressed by fuzzy
sets. Set A is the antecedent while B is the consequent
of rule R. The general form of a fuzzy rule with multiple
inputs and one output dimension can be written in the
following, so called Mamdani type orthogonally decom-
posed form [3]:

R : If x1 is A1 and ... and xn is An then y is B,
where x = (x1, ..., xn) is the input vector, xj ∈ Xj, X =

X1 × ... × Xn is the n-dimensional universe, 

A = (A1,..., An) is the antecedent vector, A ⊂∼ X, y ∈ Y
is the output variable, Y is the universe for the output
and B is the consequent set, B ⊂∼ Y. (Here ⊂∼ denotes
fuzzy subsethood.) A rule can be applied if every input
variable has a positive membership value in its corre-
sponding antecedent set. In case of multiple output
rules, the outputs are independent from each other, thus
this kind of rules can be decomposed to fuzzy rules with
one single output, reducing the computational demand
in this way. 

2.3. Fuzzy inference systems
The fuzzy sets based approach is suitable for

describing (very) complex systems which cannot be
modelled analytically. By fuzzy sets, operations and
rules, inference systems may be created which imitate
in some sense the ways of everyday human thinking.
Such systems are referred to in the literature as fuzzy
systems. The structure of a typical fuzzy system is illus-
trated in Figure 2.

The first (top left) module compares the actual ob-
servation with the antecedent parts of the fuzzy rules
in the rule base (located in the bottom block of the sys-
tem). Based on this comparison, the inference engine
(top middle unit) determines the resulting output fuzzy
set by some inference algorithm. There are some well-
known inference techniques, however, the Mamdani me-
thod is the most commonly used one in practical appli-
cations [3]. The inference engine may be viewed as a
special kind of genralised function generator as it maps
the set of all possible input fuzzy sets into the set of all
possible fuzzy outputs. The output is converted to a so-
called “crisp” value by the defuzzification module (top
right). The Mamdani inference algorithm is illustrated with
fuzzy membership functions in Figure 3.

At the beginning of the inference the degree of match-
ing between the observation and the rules is deter-
mined. Each component of the observation vector is
compared to the same component of the antecedent
of each rule. Let A* be the n-dimensional observation
vector. The degree of matching (firing) in the jth dimen-
sion in the ith rule can be computed as:

Applying fuzzy inference in the supervision system...
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Figure 2.  Structure of a fuzzy inference system



where Aj,i is the membership function of the ith rule
in the jth dimension. If the observation is a crisp vector
then the above calculation is simpler: in case of state-
vector x*, the degree of matching in the jth dimension is:

After the degree of matching was calculated in each
dimension, the resultant for the whole antecedent is de-
termined. The degree of applicability of a rule is affect-
ed by the degree of matching of its each dimension.
Thus, the firing degree of the ith rule can be computed
by taking the minimum value of the degrees of match-
ing of the rule’s antecedents: 

wi shows that how important the role of rule Ri will
be in the calculation of the conclusion for observation
A*. 

After the degree of firing was determined for each
rule, each conclusion is separately calculated. This can
be made by cutting the consequent fuzzy set of the
rule at height wi:

The conclusion for the whole rule base can be com-
puted by taking the union of the previously calculated
sub-conclusions:

After the inference a B*(y) conclusion fuzzy set was
obtained. However, in most of the cases, the expected
conclusion is not a fuzzy set, but a crisp value. Hence, the
crisp value needs to be determined, which describes
the conclusion fuzzy set in the best way. This procedure
is called defuzzification. There are many different defuzzi-
fication methods described in the literature, in this parti-
cular application the Centre of Gravity (COG) method is

applied, which is one of the most commonly used de-
fuzzification techniques in practical applications. The COG
method provides a crisp result that can be calculated as
follows: 

In the next section a more advanced approach is
briefly sketched that is suitable for handling systems with
a very large number of components.

3. Hierarchical fuzzy systems

The idea of structuring very large system in a hierarchi-
cal way came up at the beginning of 1990s. Hierarchi-
cal fuzzy systems have been successfully applied for
some special problems, where the hierarchical structure
is more or less obvious, eminently the unmanned helicop-
ter control experiment by Sugeno [4]. 

The basic idea of using hierarchical fuzzy rule bases
is the following: If the multi-dimensional input space X =
X1 × X2 × ... × Xm can be decomposed, so that some of
its components, e.g. Z0 = X1 × X2 × ... × Xp determine a
subspace of X (p < m), where in Z0 a partition Π={D1, D2,
..., Dn} can be determined:

E.g. in the unmanned helicopter control application,
different variables are dominating the behaviour when
hovering, landing, or flying forward and each of these
manoeuvres means a different local subsystem.

In each element of Π, i.e. Di, a sub-rule base Ri can
be constructed with local validity. In the worst case, each
sub-rule base refers to exactly X/Z0 = Xp+1 × ... ×Xm.

The complexity of the
whole rule base O(Tm)
is not decreased, as the
size of R0 is O(Tp), and
each Ri, i > 0, is of order
O(Tm-p), O(Tp) × O(Tm-p)
= O(Tm).

A way to decrease
the complexity would
be finding in each Di a
proper subset of 

{Xp+1 × ... × Xm}, 
so that each Ri con-

tains only less than
m-p input variables. In
some concrete applica-
tions in each Di a pro-
per subset of

{Xp+1,...,Xm}
can be found so that

each Ri contains less
than m-p input vari-
ables. 
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Figure 3.  
Mamdani inference algorithm (U denotes fuzzy union)



The rule base has the following structure:

where zi ∈ Zi, Z0 × Zi being a proper subspace of X
for i = 1,..,n. The fuzzy rules in rule base R0 are termed
meta-rules since the consequences of the rules are
pointers to other sub-rule bases instead of fuzzy sets.

If the number of variables in each Zi is ki < m – p
and , then the resulting complexity will be
O(Tp+k)<O(Tm), so the structured rule base leads to a
reduction of the complexity.

The task of finding such a partition is often difficult,
if not impossible. (Sometimes such a partition does not
even exist). There are cases when, locally, some vari-
ables unambiguously dominate the behaviour of the
system, and consequently the omission of the other va-
riables allows an acceptably accurate approximation.
The bordering regions of the local domains might not
be however crisp or even worse, these domains overlap.
For example, there might be a region D1, where the pro-
per subspace Z1 dominates, and another region D2,
where another proper subspace Z2 is sufficient for the
description of the system, however, in the region be-
tween D1 and D2 all variables in [Z1 × Z2] play a signifi-
cant role ([.×.] denoting the space that contains all vari-
able that occur in either argument within the brackets). 

In this case, sparse fuzzy partitions can be used, so
that in each element of the partition a proper subset of
the remaining input state variables is identified as ex-
clusively dominant. Such a sparse fuzzy partition can be
described as follows: 

Π̂ = {D1,D2,...,Dn} and

in the proper sense (fuzzy partition).

Even is possible (sparse partition). 

If the fuzzy partition chosen is informative enough
concerning the behaviour of the system, it is possible
to interpolate its model among the elements of Π̂.

Each element Di will determine a sub-rule base Ri
referring to another subset of variables.

A part of the hierarchically fuzzy rule base in the
above mentioned helicopter control problem is:

R0: If distance (from obstacle) is small then hover
Hover: If (helicopter) body rolls right

then move lateral stick leftward
If (helicopter) body pitches forward then
move longitudinal stick backward

4. Application of 
the fuzzy system approach

As it has been already mentioned, in the frame of this
project [5] a fuzzy system was applied as the supervi-
sion module of a telecommunication network. In this
paper just one function is described. The system deter-
mines the type of precipitation in the geographical area
under supervision, based on the available transmitted
and received signal levels coming from the telecommu-
nication network. Based on these data, a human oper-
ator can get a clear idea of the network’s actual status,
and therefore the operator can make an optimal deci-
sion about the necessary action. The system makes the
decision based on two input parameters, the first one
being the decrease of the received signal level, the se-
cond one the elapsed time.

The application is able to receive data from base sta-
tions, and these data are stored in a database togeth-
er with the corresponding time stamps. It gets the data
from the stations cyclically, and it determines the change
of signal level and the corresponding time by the com-
parison of the new and old data, and it makes an in-
ference based on these informations. The possible re-
sults of the inference may be divided into two groups.
The first group contains coclusions which refer to events
of meteorological origin, while the other one is related
to some breakdown that might cause an alarm signal. 

The alarms will usually cause some activity trigger-
ed by a human operator while the conclusion that un-
ambiguously refers to transmission trouble caused by
weather conditions clearly excludes the necessity of
any maintanance type action rather than the mere com-
pensation of the decreased transmission level by push-
ing up the power on th etransmitter side. Any technical
problem will have a very different behavioural pattern.

The mathematical relationship between the change
of signal level and the amount of precipitation can be
calculated as follows: γ = kRα where γ is the decrease
of signal level, R is the amount of precipitation, k and
α are parameters, which depend primarily on the used
frequency. 

We would like to replace the inverse of this equation
by a fuzzy model, i.e. to determine the amount of pre-
cipitation from the decrease of signal level taking into
account the elapsed time, as well. The relationship be-
tween individual variables can be described better by
using fuzzy rule bases, because the fuzzy sets used in
the rules separate the possible values of the variables
not by a crisp border but in a smooth gradual way simi-
larly to everyday human thinking.

Applying fuzzy inference in the supervision system...
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4.1. Determination of the fuzzy sets
The fuzzy rule based system uses two input vari-

ables for each pair of stations, the decrease of the sig-
nal level, and the elapsed time. The decrease of the sig-
nal level is divided into six categories:

• very moderate attenuation: 0 – 0.05 dB/km
• moderate attenuation: 0.03 – 0.18 dB/km
• medium attenuation: 0.15 – 0.7 dB/km
• significant attenuation: 0.5 – 2.5 dB/km
• high attenuation: 1.8 – 5.5 dB/km
• very high attenuation: 3.3 – 18 dB/km
The fuzzy sets are determined by these intervals.

The intervals give the support of the fuzzy sets. The
fuzzy sets for the decrease of the signal level can be
seen in Figure 4. It can be observed in Figure 4 that the
supports of the fuzzy sets overlap each other, which

means that the borders between the different attenua-
tion groups are not crisp.

The elapsed time is divided into four categories: short,
medium, long, very long. The corresponding approxi-
mate intervals are:

• short: 0 – 1 hour
• medium: 0,5 – 4 hours
• long: 3 hours – 4 days
• very long: 3 days – 1 year

The fuzzy sets are constructed from the intervals in
a similar way as previously. The fuzzy sets for the el-
apsed time are illustrated in Figure 5. The supports over-
lap in this case, too.

The output of the fuzzy system contains the refer-
ence to different precipitation types/intensities. The pre-
cipitation can be categorised as follows:

HÍRADÁSTECHNIKA

52 VOLUME LXII. • 2007/1

Figure 6.  Fuzzy sets for precipitation amount (mm/hour)

Figure 4.  Fuzzy sets for the decrease of the signal level (dB/km)

Figure 5.  Fuzzy sets for the elapsed time



• drizzle: 0 – 0,5 mm/hour
• moderate rainfall: 0,25 – 1,75 mm/hour
• medium rainfall: 1 – 7 mm/hour
• heavy rainfall: 4 – 28 mm/hour
• thunderstorm: 16 – 54 mm/hour
• intensive thunderstorm: 35 – 150 mm/hour
The fuzzy sets belonging to the precipitation catego-

ries can be seen in Figure 6.

4.2. The fuzzy rules of the system
The first input of the system was described by six

fuzzy sets, the second one by four, therefore the total
number of possible combinations is 24, which means
that 24 rules are needed to cover all possibilities. In the
conclusion part of the fuzzy rules may occur not only pre-
cipitation categories, but also various types of alarms.
These alarms denote reasons for service deterioration
which are of non-meteorological origin. 

The first input is characterised by six labels. The de-
crease of signal level is Ai, where i might be:

• very moderate attenuation:  1
• moderate attenuation:  2

• medium attenuation:  3
• significant attenuation:  4

• high attenuation:  5
• very high attenuation:  6

The elapsed time is characterised by labels Ti, where
i might assume: • short:  1

• medium:  2
• long:  3

• very long:  4

Using the above labels the following rules were con-
structed:

This rule base is used as a single unit of a more com-
plex hierarchically structured knowledge base where
the (approximate) isotropy of the attenuation observed
playes the decisive role concerning the original cause for
alarm.

It must also be mentioned that the values of atten-
uation are not identical with the directly observed ones
but are deduced values from interpolating and avarag-
ing the values calculated from the direct measurement
values according to th ephysical and geographical lo-
cations of the base stations in a particular neighbour-
hood.

4.3. The inference method
At first, the firing values of the rules are determined

based on the comparison of the given observation and
the antecedent parts of the rules. The rules can be di-
vided into two groups according to their outputs. If the
firing values for those rules are greater than for those
which contain an alarm indication in their respective
consequent, the conclusion of the fuzzy system will be
the same as the conclusion of the alarm type fuzzy rule
with the highest firing degree. In the opposite case,
when the firing values for those rules are greater than
for those, which have weather related information in
their respective consequent, a normal Mamdani infer-
ence is performed on all the involved precipitation type
rules. As the result, the most possible type of precipita-
tion will come out as dominating in the overall conse-
quent.

The conclusion given by the fuzzy system can be
displayed in a map. The colours of the cells refer to pre-
cipitations. 

Applying fuzzy inference in the supervision system...
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The assignment of colours and precipitation types
can be seen in Table 1. The different alarm categories
can also be represented by colour codes. The assign-
ment is shown in Table 2.

The operation of the system is illustrated in Figure 7
with a map, which was created by simulated precipita-
tion. The map of Hungary is covered by a grid, giving a
natural, hierarchical structure for the whole system in
this way. On such locations where more stations can be
found within one cell, an average behaviour is calcu-

lated and displayed, on the other hand, on such pla-
ces where there is no station within one cell, interpola-
tion is used to estimate the amount of precipitation. The
blue and purple colours show the estimated amount of
precipitations based on simulation data.

5. Summary

In this study the foundations of fuzzy systems were
introduced, hierarchical fuzzy systems were also dis-
cussed, and an application example was demonstrat-
ed. Fuzzy systems can be used well as a decision sup-
port tool in such applications, where the expert knowl-
edge can be easily represented in form of fuzzy rules.
In laboratory environment an application was demon-
strated, which can separate alarms of meteorological
origin from different kinds of hardware failures based
on a cyclically refreshed database in a central supervi-
sion system of a nationwide microwave telecommuni-
cation network, as well as it can identify the intensity

HÍRADÁSTECHNIKA

54 VOLUME LXII. • 2007/1

Figure 7.  Rain cloud and simultaneous Warning in Budapest on the map of Hungary

Table 1.  Precipitation types and the assigned colours

Table 2.  Alarms and their colours



map of precipitation on the whole geographical area of
the telecommunication network. 

Our plan for the future is to extend the intelligent de-
cision support system to proper hierarchical fuzzy rule
based system, making the model more general and
more sensitive in this way. Currently a network provider
in Hungary indicated their possible interest in experi-
mentally integrating the intelligent decision support sub-
system into their real operating supervision system. 
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