
1. Introduction

According to the statistics of the Business Software
Alliance (BSA), the global financial losses due to soft-
ware piracy were about 30 billion USD in 2004 [3].
Nearly half of the used software is illegal in the Euro-
pean Union. Technical and legal actions could not change
substantially this situation. It is a common belief that
there is not much to be done against the piracy of soft-
ware in the PC world. However in the world of mobile
phones, where the integrity of the operating system
can be trusted, the emerging market of mobile software
products has still the opportunity to evolve in such way
that the losses due to illegal software distribution could
be avoided, or at least moderated.

In our belief the availability of a strong copy protec-
tion scheme is the most important prerequisite for fur-
ther expansion of the mobile phone software market.
This is why our research targeted embedded systems
used in mobile phones. This way slightly different as-
sumptions can be made than on usually discussed PCs.

A trusted OS is an essential ground for achieving a
strong copy protection, since it is obvious that any soft-
ware-based protection can be circumvented if the OS
can be tampered. Solutions, when developers do not rely
on the OS at all, are also possible. However, with these
schemes are based on security by obscurity: they simply
hide the parts of the code that checks the integrity and
validity of the software, assuming that the time needed
to reveal and remove this checking is long enough not
to remarkably affect the revenues. Although the time
needed for reverse-engineering and circumventing the
protection of the software can be lengthened with this
approach, experience proved that sooner or later all
protections based on security by obscurity are cracked.

As opposed to this we propose a scheme, which
merges public key infrastructure (PKI) with obfuscation
and software watermarking techniques, assuming a trus-
ted and tamperproof OS resulting in a protection sup-
porting freely distributable, but also copy protected
software.

2. Theoretical background

Two main categories of software copy protection me-
chanisms exist: the autonomous systems and those,
which use external collaboration [10].

The protections of autonomous systems are inte-
grated into the software itself, so the security depends
only on the used software techniques. These techni-
ques include integrity protection, software obfuscation,
checksumming, encryption, preventing the running in
debug mode and other methods making the task of the
cracker harder [8].

The most common solutions are based on the pro-
gram checking itself. As these checks are part of the
program, one can reveal them by reverse engineering
and can bypass the protection by modifying the code
[10]. These techniques are neither theoretically nor – ba-
sed on our experience – practically secure enough [2].

The other category of protection mechanisms use
external collaboration; more specifically the program
uses a tamperproof processor, an operating system or
other secure hardware or software solutions. This sup-
port can be either on-line or off-line [10]. In case of on-
line collaboration some of the checking functions are
executed on other computers than the attacker could
access. As opposed to this, the off-line collaboration
does not require an on-line connection, but only a se-

2 VOLUME LXII. • 2007/1

Copy protection through
software watermarking and obfuscation

GERGELY EBERHARDT, ZOLTÁN NAGY
SEARCH-LAB Ltd., {gergely.eberhardt, zoltan.nagy}@search-lab.hu

ERNÔ JEGES, ZOLTÁN HORNÁK
BME, Department of Measurement and Information Systems, SEARCH Laboratory

{jeges, hornak}@mit.bme.hu

Keywords: software copy protection, software watermarking, obfuscation, reverse engineering, trusted OS, mobile software

Enforcement of copyright laws in the field of software products is primarily managed in legal way by the software developer

companies, as the available technological solutions are not strong enough to prevent illegal distribution and use of software.

Almost all copy protection techniques were cracked within some weeks after their market launch. The lack of technical copy-

right enforcement solutions is responsible for the failure of some recently appeared business models, partially also for the

recent dotcom crash. The situation is particularly dangerous in case of the growing market of mobile software products. In

this paper we aim at proposing a scheme which combines obfuscating and software-watermarking techniques in order to pro-

vide a solution which is purely technical, but strong enough to overcome the problems concerning software copy protection.

The solution we propose is focusing primarily on mobile software products, where we can rely on the hardware based integ-

rity protection of the operating system. (In: 2006/5, pp.51–57.)

cure hardware or software item. The secure hardware
is usually a smart card, while the secure software is the
part of a trusted OS, like in our case targeting mobile
phone software.

To link the authorized user to his or her instance of
the software, usually the services of a public key infra-
structure [9] are used. For a copy protected software a
license containing the information about the user, about
the product issuer or distributor, and about the product
itself (e.g. a hash of the particular software instance)
should be attached to the product, so that the OS
could check the authorization. The integrity of this li-
cense is protected by a digital signature, and the OS
should not run copy protected software without the
appropriate license.

However, to support multiple use cases and busi-
ness models, and to allow comfortable software devel-
opment, the OS should be capable of running both
copy protected and unprotected software, which is one
of the biggest challenges in developing a successful
copy protection scheme. This means that in a manipu-
lated piece of software or when the license is removed
the OS should also detect that the code was initially
protected.

As opposed to usual protection models used in mul-
timedia files using watermarking to trace a content in
order to identify its origin, software use watermarking to
make possible the indication on the code that it is copy-
protected. As the instructions of the code can be ob-
fuscated arbitrarily as long as the user-perceptible out-
put remains the same, this enables us to implement
more efficacious watermarks to software than to audio/
video files.

We can differentiate between two types of software
watermarking techniques: static and dynamic. In case
of static watermarks the information is injected into the
application’s executable file itself. The watermark is typ-
ically inside the initialized data, code or text sections of
the executable [1,7,8,11,13,14]. As opposed to this,
the dynamic watermarks are stored in the program’s exe-
cution state, and not in the program code. This means
that the presence of a watermark is indicated by some
run-time behavior of the executable [5,6,12].

To prevent the easy removal of watermarks we can
use software obfuscation, which is a collection of sev-
eral different code transformations with the common goal
to make the reverse engineering more difficult both in
case of automatic tools and for the human understand-
ing of the code [4,15]. The most important aim of these
transformations is to make code transformations meant
to remove the watermark hard to accomplish.

3. Requirements and quality goals

In this section we define the requirements and assump-
tions towards our copy protection scheme.

3.1. Trusted operating system – integrity & confidentiality

For a trusted OS we assume that the integrity of the
undergoing processes is ensured (e.g. protected mem-
ory areas cannot be changed). However the confiden-
tiality of the information flowing through the OS does
not have to be guaranteed. This implies that although
the method of watermark detection is kept in secret, it
is hard to remove the watermark from the protected
application even if the watermark generation and de-
tection algorithms are well known to the public, thus
avoiding security by obscurity.

The OS should also be capable of checking the dig-
ital signature of the applications and support PKI with
certificate chains and revocation.

3.2. Same observable behavior
In our case the observer is the customer, longing to

use the protected program. From his or her point of
view the transformed program should be functionally
the same as the original one. For example it should
have the same windows, the same files and the same
connections to the outside world, and all these should
behave in the same way. However the speed, the me-
mory usage and the inner states of the program during
the execution, including the program code could be
modified slightly or even to a greater extent.

3.3. Harder to reverse engineer
On one hand the obfuscation should make the auto-

matic decompilation of the code very difficult, while on
the other hand the code should be made incompre-
hensible for human understanding to the greatest ex-
tent possible [8]. Our goal is to make the reverse engi-
neering difficult. This means that the reverse engineer-
ing and thus removing the protection should be ext-
remely time-consuming in order not to be worth the
effort and time spent on doing it. To state it in other way,
difficult and to make harder here means that the de-
compilation of the protected program should include
the solving of such a complex problem, whose com-
plexity can be deduced to a problem accepted to be
hard in cryptography, so typically being equivalent with
as if one should have to break a cryptographic algo-
rithm.

3.4. Harder to remove the watermark
This quality indicator is strongly connected to the

one described in the previous paragraph. A robust
obfuscation method not only makes the reverse engi-
neering harder, but also prevents the easy removal of
the watermark.

As in case of the trusted OS we assume only the
integrity, but not the confidentiality: we have to hypoth-
esize that the watermark detection method cannot be
kept in secret. Thus, the removal of the watermark has
to be hard enough also when the detection method is
public, or when everybody can detect the watermark.
The watermark has to be embedded in the original
code deeply enough so that the watermark should not
be removed without the full understanding of the whole

Copy protection through...

VOLUME LXII. • 2007/1 3

code. The watermark generation on asymmetric encryp-
tion can be used for example where the private key is
kept in secret, but the algorithm itself is considered to
be public.

3.5. Scalability of the transformations costs
Because every transformation has a cost in terms of

speed and memory usage, it is important that the pro-
tection is effective from this point of view as well. To ful-
fill the different requirements and limitations on trans-
formation costs for the different areas of the code, the
accomplished transformations should be scaleable in
terms of speed and memory usage of the resulting
transformed applications.

4. The proposed copy protection scheme

To summarize, our scheme is constructed from the above
mentioned building blocks, taking into account the list-
ed requirements. The integrity of the software is ensu-
red through a digitally signed license, and if the license
or its digital signature is invalid, the OS prevents the
application from running. However, if there is no license
attached to the application, the OS can start it, but
should continuously check for the presence of water-
marks in it, which designates that it is a protected piece
of software, so should have a license file attached. The
removal of watermark is hard because of different ob-
fuscation methods utilized, so the attacker cannot change
or break the protection to make the application run with-
out the license.

The license checking algorithm being the most im-
portant part of our scheme is shown on the Figure 1.

(1) Check if a digitally signed license is attached to
the application.

(2) If there is a license, and if both the license (e.g.
its hash signature) and the digital signature are valid,

then the application can be run without accomplishing
any further checking for watermarks.

(3) If the license or its digital signature are not valid,
the application should stop immediately, and the OS
should make the appropriate steps (for example by log-
ging or even reporting the event), as in this case the
copy protection is violated.

(4) If there is no license attached to the application,
it could either be freely distributable software but also
a copy protected but manipulated program, so it should
be allowed to start.

(5) Parallel to this the OS should start the continu-
ous search for watermarks.

(6) If a watermark is found in the application, its run-
ning should be stopped immediately, and again the
appropriate steps should be made, because the pres-
ence of the watermark unambiguously signals that a
license should be attached to the application, without
which it is an illegal copy.

So, in our scheme we use software watermarks to
indicate that the program is copy protected, thus the
inserted watermark should have the following proper-
ties:

– it has to be able to store only a one bit informa-
tion, indicating that the program is copy protected,

– it should not use a secret method to hide
the watermark, as the attacker can reveal and
understand the watermark detection algorithm,

– all watermark removal should not be possible
via automated or manual means even in cases
when the attacker might know the detection
algorithm.

To fulfill these requirements we have chosen to use
dynamic watermarks, because in this way the binary
form of the watermark is formed during the program
execution.

To detect dynamic watermarks the program should
run for a while. This implies that the program state
should be checked continuously during the execution.
There is no time limit, after which it is assumed that

there is no watermark in the program.
The watermark detection procedure could
slow down the execution of the applica-
tion, so in the proposed copy protection
checking algorithm the watermark detec-
tion is done only in case the license file
is not present. So it will be the develop-
ers’ essential interest to provide licenses
to their released products in order to
exploit the capabilities of the device to
the best extent possible.

The connection between the program
and the OS during the watermark check-
ing process is illustrated in the Figure 2.

Our dynamic watermark only stores
one-bit information in form of a special
number derived from a random value ap-
pended with its value transformed with a
function ƒ.

HÍRADÁSTECHNIKA

4 VOLUME LXII. • 2007/1

Figure 1. The l icense checking algorithm

The transformation accomplished with this function
can be a digital signature, a hash value, CRC or others
for example even a simple XOR operation with a con-
stant value; its role is simply to keep the probability of
appearing of such a value pair in a non-protected app-
lication low, so if such a value appears in an application
frequently enough, it can designate the presence of
the watermark.

So the watermark can be defined as follows:

WM = (RND; ƒ(RND))
These different WM values should be hidden in the

application as frequently and for as long as possible,
which means that these values should appear in the
state of the program frequently enough to allow their
detection and statistical evaluation of these detections.
To achieve this goal we can for example pick the para-
meters of different data obfuscation transformations in
a way that one or more original values of a variable
(typically a loop control variable) are transformed into
watermarks values, which are then stored in program
state in the transformed domain.

The gap between the prevalence of such water-
mark values in non-watermarked and watermarked app-
lications, as shown in the Figure 3, can allow easy de-
tection of the watermarks by statistical means.

Figure 3.
The gap between non-watermarked and watermarked
applications regarding the prevalence of watermark values

As the attacker cannot
know the exact value of
the watermark due to its
randomness, he or she can
only detect, when it is form-
ed in the program’s state
resulting from the appropri-
ate inputs. Therefore the at-
tacker has to execute all
branches of the program
with all possible input val-
ues to be sure that the wa-
termark is fully removed.

5. The architecture
of the system

Figure 4 below illustrates the main parts of the system
and their connections. The obfuscation and the soft-
ware watermarking transformations take place integrat-
ed into the usual C/C++ compilation process, which
usually starts with a preprocessing step.

The inputs of the system are the C/C++ source files
of the application to be protected. Different directives
can be placed in the source code to control the obfus-
cation and watermark insertion process. These direc-
tives are collected during this preparation process, and
the original source is passed to the Compiler, which will
produce LST file and the debug information file.

The latter two form the basic sources of information
about the code, but other files originating from the
Disassembler (disassembly LST), Linker (map file) and
the Profiler (profile information) can be also used for this
purpose.

Figure 4.
The modules of the system and their connections

Copy protection through...

VOLUME LXII. • 2007/1 5

Figure 2.
Connection between the program and the OS during
the watermark checking process

The collected information is merged and prepared
to form a compiler independent representation called
the Code Model, which is used to accomplish the need-
ed transformations, while the code itself is translated
into an abstract representation called Virtual Machine
Code (VMC), on which the transformations will be car-
ried out.

After this preparation the system analyzes the ga-
thered information, during which the Analyzer module
performs control and data flow analysis and finalizes
the Code Model, which then contains all necessary in-
formation to plan and accomplish any watermarking or
obfuscating transformations.

The transformations are accomplished in several
iterations. Upon every iteration the Transformation Cont-
roller creates a detailed plan about the transformation
to be accomplished in the current step, along with their
sequence. During the transformations the intermediate
representation must remain in consistent state, which
means that even after every iteration the code should
be functionally equivalent with the original one.

To ensure efficiency and functional equivalency of the
code, every transformation is done in two steps. The
first step is responsible for making a transformation plan
(Planner) and the other is responsible for the execution
of this plan (Executor). The Planner is responsible for
finding proper and optimal parameters for a specific
transformation in the current context, while the Exe-
cutor ensures the functional equivalency. This way it is
enough to prove the correctness of the Executor for-
mally.

The transformation steps batched in the iterations
are applied to the abstract representation of the code
until the expected goals are reached,
namely the hiding of the adequate number
of watermarks and reaching the desired
level of obfuscation. After the transforma-
tions are accomplished, the abstract repre-
sentation of the code is translated (serial-
ized) back to an assembly source code,
which is ready to be compiled by an assem-
bler. The result of the process is the com-
piled object code, which is on one hand
obfuscated and on the other hand it con-
tains the watermark.

6. Results

To evaluate our copy protection scheme we have im-
plemented the full framework system based on the
above introduced architecture along with a number of
transformation methods. At the end of this article intro-
ducing the proposed scheme and the framework sys-
tem architecture we illustrate the capabilities of such
architecture with a simple example, the implementation
of the Hide Library Calls obfuscation technique.

Most programs heavily use calls to the standard
libraries and to the operating system, and since the se-

mantics of the library functions are well known, such
calls can provide useful clues to perform reverse engi-
neering on an application. The Hide Library Calls tech-
nique can be used to dismiss this help from the code.

There are different methods to obfuscate the calls
to such fixed functions. The basic idea behind all of
these transformations is that the original API call is
changed to an inner wrapper function of the applica-
tion, which will call the real API function. The obfusca-
tor can create an interface function to each API call,
but the call of each API function can be integrated into
a single function as well. In this latter case usually the
value of an input parameter designates which API call
should be called by the wrapper function.

In case of this obfuscation the Planner (see archi-
tecture in Figure 4 above) is simple, because it has to
find the possible call references and has to choose a
subset of them, which are to be hidden (even all can
be chosen to be hidden). So the generated Plan con-
tains the list of call places. The steps of the algorithm
for hiding library calls once the plan is ready is as fol-
lows:

1. Creating a new function, which will be the wrap-
per function calling the actual API functions.

2. Assigning identifiers (values) to API calls to be
hidden, and creating the instructions and the blocks of
the wrapper function regarding to the calls and the
identifiers.

3. Changing the original instructions calling API func-
tions to point to the new wrapper function and passing
the appropriate identifiers as additional arguments to it.

The following example shows an API call after the
Hide Library Calls transformation is accomplished:

7. Summary

In the above article we have presented our scheme,
which combines cryptography, software watermarking
and obfuscation in order to achieve a strong technical
solution for software copy protection, targeting primarily
the mobile software developers. Based on this scheme
we have designed the architecture of a protection tool
that can be integrated in a development environment
to provide copy protection services.

The architecture is robust and open in a sense that
the module dealing with transformations – both water-

HÍRADÁSTECHNIKA

6 VOLUME LXII. • 2007/1

ldr lr, LI11 @ Save return address
mov ip, #1 @ Set ip to the called function ID
ldr r5, LI12 @ Load address of global variable
str ip, [r5, #0] @ Save ID to the global variable
b HideCalls_2 @ Call function

LI11:
.align 0
.word .L12 @ Address of the next function

LI12:
.align 0
.word .LD110 @ Address of the global variable

.L12:

marking and obfuscation – is completely independent
of the processor, the OS and the development environ-
ment, as it works on an abstract representation of the
source code. This way, by replacing the preprocessing,
translating and serializing modules, we can integrate
our system into several environments.

As in the case of code transformations the formal
proof of correctness of transformations is essential, all
transformation are done in two steps: after planning
the particular transformations in order to form a trans-
formation sequence that fulfills our goals, the separate
and much simpler transformation steps are executed
so that their accomplished activity can be formally pro-
ven to be correct. This proof should be done for all
transformations that can be executed within our frame-
work.

Having the framework ready, the next step in our
research is to broaden the set of such transformations
to test different kinds of obfuscation, and to inject cer-
tain code fragments into our Code Model to implement
dynamic watermarking. Our goal is on one hand to
develop and test the efficiency of several control and
data obfuscation methods, and on the other hand to
hide dynamic watermark in the code and accomplish
several measurements regarding the ability of an inde-
pendent code (which will be the OS) to detect them.

Acknowledgements

The project is being realized by the financial support of the
Economic Competitiveness Operative Programme (Gazda-
sági Versenyképesség Operatív Programja, GVOP 3.1.1/
AKF) of the Hungarian Government.

References

[1] G. Arboit,
“A Method for Watermarking Java Programs
via Opaque Predicates”,
In: The 5th International Conference on Electronic
Commerce Research (ICECR-5), 2002.

[2] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich,
A. Sahai, S. Vadhan, K. Yang,
“On the (im)possibility of obfuscating programs”,
In: Proc. CRYPTO‘01.
Lecture notes in computer science, Vol. 2139.
Springer, Berlin-Heidelberg-New York, 2001.
pp.1–18.

[3] First Annual BSA and IDC Global Software
Privacy Study, Business Software Alliance and
IDC Global Software, 2004.

[4] C. Collberg, C. Thomborson, D. Low,
“A Taxonomy of Obfuscating Transformations”,
Technical Report 148, Dept. of Computer Science,
The University of Auckland, 1997.

[5] C. Collberg, C. Thomborson,
“On the Limits of Software Watermarking”,
Technical Report 164, Dept. of Computer Science,
The University of Auckland, 1998.

[6] C. Collberg, C. Thomborson, G. M. Townsend,
“Dynamic Graph-Based Software Watermarking”,
Technical Report TR04-08, 2004.

[7] R. Davidson, N. Myhrvold,
“Method and system for generating and auditing
a signature for a computer program”,
US Patent 5,559,884,
Microsoft Corporation, 1996.

[8] G. Hachez,
“A Comparative Study of Software Protection Tools
Suited for E-Commerce with Contributions to
Software Watermarking and Smart Cards”,
Ph.D. thesis, Universite Catholique de Louvain, 2003.

[9] International Telegraph and Telephone
Consultative Committee (CCITT):
The Directory – Authentication Framework,
Recommendation X.509, 1988.

[10] A. Mana, J. Lopez, J. J. Ortega,
E. Pimentel, J. M. Troya,
“A framework for secure execution of software”,
International Journal of Information Security,
Volume 2, Issue 4, Springer, November 2004.
pp.99–112,

[11] A. Monden, H. Iida, K. Matsumoto,
“A Practical Method for Watermarking Java Programs”,
The 24th Computer Software and Applications
Conference (Compsac’00), Taipei, Taiwan, Oct. 2000.

[12] J. Palsberg, S. Krishnaswamy, M. Kwon,
D. Ma, Q. Shao, Y. Zhang,
“Experience with Software Watermarking”,
In: Proc. of the 16th Annual Computer Security
Applications Conference, ACSAC 2000,
pp.308–316.

[13] J. P. Stern, G. Hachez, F. Koeune, J.-J. Quisquater,
“Robust Object Watermarking: Application to Code”,
In: A. Pfitzmann, editor, Information Hiding ‘99,
Vol. 1768 of Lectures Notes in Computer Science
(LNCS), Dresden, Germany, 2000.
pp.368–378.

[14] R. Venkatesan, V. Vazirani, S. Sinha,
“Graph Theoretic Approach to Software Watermarking”,
In: Proceedings of the 4th International Workshop
on Information Hiding table of contents, 2001.
pp.157–168.

[15] G. Wroblewski,
“General Method of Program Code Obfuscation”,
Ph.D. thesis, Wroclaw University of Technology,
Institute of Engineering Cybernetics, 2002.

Copy protection through...

VOLUME LXII. • 2007/1 7

