
1. Introduction

Software fault tolerance (FT) techniques are designed
to allow a system to tolerate software faults that remain
in the system after its development. An important class
of software fault tolerance techniques utilizes indepen-
dently developed but functionally equivalent software
variants (often called versions). Independent design and
implementation of variants is aimed at reducing the pro-
bability that more variants contain the same error(s), since
the variants will act as redundant components masking
or replacing each other in case of an error is activated
on a given input. Recovery blocks (RB) [1] and N-ver-
sion programming (NVP) [2] are well-known software FT
schemes. They are used in critical applications ranging
from embedded control systems to availability- or secu-
rity-critical server applications in carrier grade products.

• The RB scheme implements a passive redundancy
approach. It contains at least two variants of the same
functionality, an acceptance test and an executive. Re-
ceiving a request, the executive establishes a check-
point by saving the state of the application, then exe-
cutes the primary variant and invokes the acceptance
test on the result of the variant. If the result is accept-
able then this will form the output of the FT scheme. In
case of a failure reported by the acceptance check, re-
covery (restoration of state) is performed, and the next
variant is invoked. Variants are called in this way until a
valid result is found. If no variant can provide acceptable
result then a failure is reported.

• The NVP scheme implements an active redundan-
cy approach. It contains at least three variants for the
same functionality, a voter and an executive. The exec-
utive invokes all the variants in a parallel way forwarding
to them the input data, then collects the output results
and forwards them to the voter. If a majority result exists
then it will be the result of the NVP scheme, otherwise
a failure is reported. Accordingly, the majority of fault-
free variants mask the output of an erroneous one.

There are several extra requirements towards the
software that is to be used as a variant in an FT scheme.
The communication with the environment, the use of
global variables, the implementation of error handling etc.
are restricted since all input and output shall be strictly
controlled by the executive as presented above. Ac-
cordingly, variants shall be implemented by taking spe-
cific rules into account.

If a service implemented by an existing software
(called in the following as legacy software) is to be trans-
formed to a fault tolerant one then a natural idea is to
use the existing software implementation (or parts of it)
as a variant in the FT scheme. (Besides this, another va-
riant(s) have to be implemented as well.) Unfortunately,
legacy software typically does not satisfy the require-
ments mentioned above, thus re-design or modification
become necessary. These modifications usually mix up
the concerns of the original functionality (business logic)
and fault tolerance, as source code snippets for error
detection, fault handling and redundancy management
have to be modified or inserted into the original code.

When transforming an existing service to a fault tol-
erant one, we face the following challenges:

• Establishing rules to form a variant and modifying
the legacy software to satisfy these rules. To do this, a
technique was needed that allows performing these
modifications in such a way that is easy to review, verify
and change if necessary. Direct modification of the
source code was not feasible from this point of view, as
clear separation of the original business logic and the
FT extensions was needed.

• Elaborating the core logic of the FT scheme in such
a way that is easy to re-use if another service is to be
transformed to a fault tolerant one.

There are several approaches that aim at separating
functional and non-functional (e.g. fault tolerance) as-
pects. Library calls to pre-defined mechanisms [3], ref-
lection [4], and meta-object protocols [5] are mature and
well-tried techniques that address the separation of func-

56 VOLUME LXII. • 2007/1

Adding high availability features 
to server applications 

using aspect oriented programming
RÓBERT FAJTA

Nokia Research Center, Budapest, rfajta@gmail.com

PÉTER DOMOKOS, ISTVÁN MAJZIK
Budapest University of Technology and Economics, Dept. of Measurement and Information Systems

{pdomokos, majzik}@mit.bme.hu

Keywords:  AOP, fault tolerance, legacy software, FT-scheme, AspectJ, HTTP server

The transformation of existing software to a fault tolerant one typically requires redesign and heavy modifications in the orig-

inal source code. Aspect-oriented programming (AOP) is an emerging programming paradigm that promotes collecting fea-

tures that are not related to the business logic, into crosscutting concerns, thus separates them from the original problem

domain of the software. We analyzed how to use AOP to add fault tolerance to existing software by organizing the software

into recovery blocks or N-version programming fault tolerance scheme. We gathered practical experiences by modification

of a complex application software. (In: —)



tional and dependability requirements. We opted for the
emerging paradigm of aspect-oriented programming [6])
due to the following reasons:

• AOP provides a clear separation of non-functional
activities (like redundancy management) by supporting
the modularized implementation of the crosscutting con-
cerns. In case of library calls, for example, the non-func-
tional activities can be collected in a library, however, the
calls to library functions are scattered in the original code.

• AOP has better support (considering programming
languages, development and debugging environments)
than reflection and meta-object protocols in our appli-
cation environment.

• Moreover, the previous techniques do not allow fine
grade parameterization of the modifications, e.g. by sup-
porting name-based, property-based, location- or caller-
specific modifications.

There are several approaches to AOP like the Multi-
dimensional Separation of Concerns [7] supported by
Hyper/J or the use of Composition Filters [8]. We follow
the concepts and terminology of AspectJ [9] since in our
case there is no need to handle multiple decomposi-
tions and the composability of aspects; only a modular-
ized specification of the scattered behavior is needed.

The facilities of AspectJ AOP can be summarized as
follows (the interested reader is referred to an introduc-
tion published in this journal [10]). The solution for fault
tolerance as a crosscutting concern is provided by code
snippets (advices in AOP terminology) that affect the
behavior of the original software during execution. 

These advices are applied at specific locations of
the source code (called join points) as designated by
AOP language expressions called pointcuts. Pointcuts
can refer to call or execution of given methods, set or
get of attributes etc. A before advice (after advice)
may be executed before (after, respectively) a specified
execution point (e.g. method call). An around advice
may replace the original code at the join point. (Note
that the original code can be executed by using a pro-
ceed statement in the around advice.) In this way, both
the extension of the behavior and the replacement or
masking of the original behavior is possible. Aspects mo-
dularize the pointcuts and advices, and can add mem-
bers to existing classes/interfaces, as well.

For example, in Figure 1 the call of the original ser-
vice1() method (on the left) is designated by the call-
Service1 pointcut (on the right of the Figure). This point-
cut is used in an around type of advice that replaces in
run time the service1() method call with a different piece
of code including a call to otherService(). The pointcut
and the advice are modularized in an aspect called
MaskService.

AspectJ as aspect language enables the entire fea-
ture set of the Java language and its libraries, while it
adds the new language constructs. Its compiler (wea-
ver) merges the aspects with the original code and gen-
erates ordinary Java class files. We examined the im-
plementation of RB and NVP schemes on the basis of
legacy software by using AspectJ AOP. After summariz-
ing the general rules to form an FT variant (Section 2)
our paper discusses the following:

• Advantages and limitations of AOP to modify lega-
cy software to form a variant for an FT scheme (Section
3). AOP is used to insert additional functionality that is
needed, and to replace existing behavior (code snip-
pets) that are not allowed in order to satisfy the rules
concerning the setup of FT variants. By using AspectJ
AOP, the majority of the necessary modifications can be
performed. However, it turned out that not all modifica-
tions can be implemented by applying the existing lan-
guage constructs of AspectJ. In these specific cases the
direct modification cannot be avoided.

• Implementation of the core control logic of the FT
scheme in a re-usable form by using AOP (Section 4).
Here the language constructs of the AOP are used to
integrate the control logic (as a separate aspect) with
the business logic of the application.

These results and experiences were gathered in a
project in which a real-life application software, an HTTP
service was transformed to an FT one. The details of this
application are presented in Section 5.

2. Rules to be satisfied by a variant

The executive of the FT scheme shall effectively man-
age both the calling of the variant and the change of
the global state outside of the variant. To be able to do

Adding high availability features...

VOLUME LXII. • 2007/1 57

Figure 1. 

Masking a method 
by using AOP



so, the functionality provided by a variant shall be avail-
able through an external interface in the form of a set of
distinct methods. The service of the variant shall be pro-
vided by the return values of these methods. Moreover,
the following side effects are not allowed:

– changing the global state of the application by
modifying global (shared) variables,

– sending or receiving messages,
– using volatile or non-deterministic values,
– performing individual error handling 

(besides returning error codes or throwing exceptions).
The following section presents how these rules can

be satisfied by applying AspectJ aspects to the legacy
Java code. Naturally, the identification of the locations
where these rules might be violated requires the avail-
ability of the program source code (the utilization of byte-
code modifications is left for future work).

Two restrictions can be derived even before a de-
tailed analysis:

– If the service to be made FT is not available by a set
of methods but spreads across the software then
the direct code modification cannot be avoided.

– AspectJ pointcuts are based on attribute opera-
tions and methods, and finer level join points can-
not be specified. Accordingly, no modification is
possible at the level of instructions and control-
flow operations. If a rule is violated at this level
then the AOP based modification is not possible.

3. Forming a variant from 
the legacy code

The violations of the rules presented in Section 2 can
be handled by AOP in the following cases:

Changing the global state. There are two alterna-
tives to avoid the potentially inconsistent change of glo-
bal variables by the variants:

• Emulation of a separate environment for each vari-
ant, which contains a copy of the global variables that
the variants would modify. Each modification of the origi-

nal variables made in the variants must be redirected to
the emulated variables by AOP advices. Set and get
pointcuts referring to the original variables should be
defined where a variant attempts to access the original
variables. Call pointcuts should be used to pick out
those points of the variant from where the original vari-
ables are accessed via internal setter or getter meth-
ods. Additionally, an around advice should be attached
to these pointcuts to redirect the write and read opera-
tions to the emulated variable set. At the end of the suc-
cessful execution, the emulated global variables of a va-
riant that provided proper result must be copied to the
original global variables.

• Splitting up the variants into functionally equivalent
blocks that do not modify global variables, and perform-
ing a local adjudication process among the blocks be-
fore executing the modifications (Figure 2). However, this
splitting is not always possible, e.g. if the variants ac-
cess the global variables in different order.

Sending and receiving messages. The legacy soft-
ware may establish a connection to receive or send
messages. These messages get out of control of the FT
executive (e.g. by changing the state of the receiver).

The proposed solution is using aspects to redirect
message readings and writings from/to the communica-
tion channel to buffers. Incoming messages have to be
stored in these buffers by the executive and variants
can receive messages from the buffer. The outgoing
messages are written to the buffer and they are for-
warded to the original target by the executive after the
successful execution of the variants.

A possible realization with AspectJ is the definition of
call pointcuts to pick out the method where the variant
attempts to retrieve the input and output streams of the
communication channel. Around advices are attached
to these pointcuts to create the buffers in the advice
and attach piped input and output streams to them,
respectively. A thread is created to store the messages
from the communication channel to the input buffer, and
another thread is used to replay the contents of the
buffer to the variant. The advices return with these piped

HÍRADÁSTECHNIKA

58 VOLUME LXII. • 2007/1

Figure 2.  

Local adjudication 
among blocks 

in an NVP pattern



streams. (Threads are necessary because piped input
and output streams attached to each other must be
handled in separate threads in order to avoid deadlock.)

If the original software expects an answer to a mes-
sage, then the variants must be split into blocks (if pos-
sible) in which no message is sent/received. The exec-
utive applies local acceptance tests (in the case of RB)
or voting (in the case of NVP, Figure 2) and then sends
the messages and waits for the answer to be processed
in the next block.

Error handling including exceptions. The legacy
software may contain error handling code. This error
handler shall be masked only if it prevents the proper
execution of the FT scheme. E.g. an error handler that
aborts the execution of the variant by returning null value
or throwing an exception to indicate an error should not
be modified. Instead, the executive can examine the re-
turn value or catch the exception to recognize that the
variant failed. However, if the error handler takes actions
that have effects outside of the variant (e.g. it sends
messages or terminates the program execution), then
the error handler must be masked by an advice as fol-
lows:

• If the error handler is located in a distinct method,
then this method can be suppressed by picking it out
using an execution pointcut to which an empty around
advice is attached.

• If the error handler in the legacy code is realized as
an exception handler, then a possible solution is attach-
ing an around advice on each call that can throw an
exception caught by this exception handler, and sur-
rounding the proceed call in this advice by a try-catch
block. Thus the exception does not reach the original
exception handler.

4. Implementing the FT scheme

Conceptually, the FT executive and the wrapper code
snippets that are applied to form a variant from the lega-
cy code are implemented in aspects.

The executive of the FT scheme will represent the
services of the legacy software (now forming one of the
variants) towards the clients, i.e., the calls to the original
legacy methods shall be redirected to the FT executive.
To do this, these method executions are picked out by
execution pointcuts that reveal their parameters. An
around advice is attached to these pointcuts to mask
the direct invocation of the original method and execute
the control logic of the FT scheme instead. The original
method is invoked from this advice by the proceed
statement of AspectJ and the parameters are passed to
it. If necessary, other variants and the adjudicator (voter
or acceptance test) are called as well. The setup is pre-
sented in Figure 3.

In the following some specific problems of the imple-
mentation are summarized:

Timeout checking. If timeout checking of the call to
the original method is implemented in the client then the
executive shall translate this timeout value to timeout
values for the individual variants that are executed and
it shall check their timeliness.

Termination support. The variants shall implement a
cooperative mechanism to allow stopping them in case
of timeout, since Java does not support forced thread
stopping (Thread.stop() became deprecated).

Reporting the failure of the FT scheme. If the failure
of the variant(s) cannot be tolerated by the FT scheme
then the executive has to report the failure to the caller
according to the caller’s expectation (e.g. by providing
an error code or throwing an exception).

Checkpointing and recovery. In the case of the RB
and the serially executed NVP schemes the legacy code
must be analyzed to find out whether it modifies the state
of its environment during execution. The state prior to
modification must be saved and later restored.

Design of adjudicators. The acceptance test of the
RB or the voter of the NVP shall not contain fault hand-
ling code (for example, exception throwing) since fault
handling must be provided solely by the executive of the
FT scheme. Existing fault handling code in a legacy ad-
judicator shall be masked by an AOP advice.

Adding high availability features...

VOLUME LXII. • 2007/1 59

Figure 3.  

Implementation of the FT scheme



Re-use of the aspect-based modularization of the FT
scheme is possible as follows:

• The core control logic implemented by the advice
belonging to the executive is directly reusable.

• The application specific parts of the executive are
formed by those functions which communicate
with the client, call the original variant, handle
checkpointing and recovery, and call the adjudicator.
These parts must be adapted.

• Adjudicators are typically application-specific thus
they cannot be re-used in original form.

The AOP based implementation of the FT scheme
does not introduce significant extra cost besides the
known costs of the FT solution (i.e., costs of developing
additional variants and adjudicator, cost of increased
execution time). Moreover, the same dependability bottle-
necks are present as in the case of the traditional imple-
mentation: faults in the executive and the adjudicator
shall be tolerated separately.

5. Implementation experiences

The concepts described in the previous sections were
applied in the case of Sun Microsystems’ Open Service
Gateway Initiative (OSGi) [11] implementation, called Ja-
va Embedded Server (JES) that provides a framework
for multiple applications (called bundles). 

One of the applications is the HTTP Service. It can be
used in web based servers as well as in mobile phones
to provide extra services for configuration or download.
The HTTP Service provides a registration service for other
bundles in the framework to enable them to register their
own resources and/or Java servlets. The HTTP Service
acts as an HTTP server which analyzes the incoming re-
quest and maps it to a registered resource or servlet

and delivers the resource or the result of the servlet to
the client.

Our task was to make this OSGi HTTP Service fault
tolerant by applying the RB scheme. The original HTTP
Service implementation (referred to as jesHTTP, see Fi-
gure 3) is considered as one variant, and another imple-
mentation (referred to as nHTTP) is developed as the
second variant. 

The fault tolerant HTTP service implementation (re-
ferred to as ftHTTP) forms a single bundle. After starting
the service, it is ready to accept servlet and resource re-
gistrations and unregistrations, and client connections.
As it uses jesHTTP as a variant, there are several func-
tions that the ftHTTP must implement, and some others
that have to be masked in jesHTTP. The latter are not
parts of the HTTP service itself, but are responsible for
starting up and shutting down the bundle. Moreover,
servlet initialization and destruction were implemented
in the FT executive and were masked in the jesHTTP
variant. They belong to the servlet’s life cycle and must
be performed exactly once. Note that failures occurring
in the servlets as external units are out of the scope of
the RB scheme.

During the modification of jesHTTP, the problems of
changing the global state, and sending and receiving
messages had to be handled.

Changing the global state. The global state of the
HTTP server is represented by the registration database,
the session data and the servlet context. In our imple-
mentation the registration database and the session
data are in the scope of the variants, and their consis-
tency is to be ensured by the executive. 

In this way the complex operations of handling the
registration database and the session data are perform-
ed under control of the RB scheme.

HÍRADÁSTECHNIKA

60 VOLUME LXII. • 2007/1

Figure 4.  

jesHTTP class diagram



Registration database: Each variant has to maintain
its own registration database. Consistency is ensured
by forwarding each registration related request to each
variant (Figure 4). If a fault occurs in a variant, e.g. it re-
moves the wrong entry upon an unregistration request,
it will not be able to serve the requests regarding the re-
moved entry, instead, it will report an error. However, the
other variant may be able to serve the request. In the
case of a common registration database this kind of fault
tolerance could not be achieved. The drawback of this
solution is that the registration of a servlet or a resource
becomes slower since multiple registrations are perform-
ed. However, this is a rare event under normal operat-
ing conditions.

Session data: Sessions are used to store client-re-
lated data between requests. They are manipulated by
servlets (session data can be used for communication
between servlets). Session data must be available to the
servlets independently from the currently running HTTP
server variant. Before the execution of the first variant,
the session data is saved in a checkpoint. If the first va-
riant succeeds, the checkpoint is discarded. If the vari-
ant fails, the savedsession data is reloaded into the next
variant. This is the recovery step of the RB scheme. Af-
ter the successful execution of this variant, its session
data is used in the following. In fact, the session data is
considered as global data that is passed to the variants
upon execution (as in the case of the emulated environ-
ment).

Servlet context: It is part of the servlet configuration
maintained by the HTTP server. If a servlet sets an attri-
bute of the servlet context, it must be possible to re-
trieve this attribute later, even if the servlet is executed
by another variant. The execution of the servlet is atom-
ic from the viewpoint of the HTTP service. The imple-
mentation of the context management (setting and get-
ting variables) is rather straightforward, therefore it was
not put under control of the RB scheme. Although the

servlet context belongs to global data, it is not involved
in the checkpointing, because it is not the variant but
the servlet that manipulates the context data.

The ftHTTP initializes the servlet with its own servlet
configuration implementation that can store references
to other servlet configurations. An advice is used to sup-
press the servlet initialization in the jesHTTP variant, and
store a reference to the jesHTTP servlet configuration in
the ftHTTP implementation.

If a variant retrieves the servlet configuration, an ad-
vice captures this request and it returns the object that
was stored in the ftHTTP servlet configuration for the
corresponding variant.

Access to the attribute handling methods of the serv-
let context contained by the servlet configuration of the
variant is redirected to the common implementation. This
way, if a variant adds extra functionality to the servlet
configuration or the servlet context, it can continue to
use the extra functionality; while attributes that are part
of the servlet context specification remain common be-
tween all variants. However, if a variant adds extra func-
tionality to the servlet configuration or the servlet con-
text, it must be analyzed whether it interferes with the
services defined by the interface. If it is so, then this in-
terference must be managed.

Sending and receiving messages. The process of
the original servlet registration is modified by an advice
to suppress creating and starting a listener that would
accept connections on a server socket. In the FT imple-
mentation, connections are accepted in the ftHTTP exe-
cutive. The first step of serving a request is storing the
request in a buffer, so that it can be replayed to the vari-
ants.

The implementation applies advices that replace the
input and output streams in the jesHTTP variant (when
they are retrieved from the socket) with piped input and
output streams. The piped input stream reads from the

Adding high availability features...

VOLUME LXII. • 2007/1 61

Figure 5. 

Registration of 
a servlet



request buffer, the piped output stream writes to the re-
sponse buffer, thus the variant does not use the streams
of the socket directly. To compose the response, the va-
riant invokes the servlet or retrieves the resource. The
response of a successfully executed variant will be com-
mitted to the socket.

Implementation of the acceptance test. The ac-
ceptance test of the RB scheme examines the value of
the response code returned by the HTTP server variant.
If the response is “OK” then the variant can commit its
result to the socket, thus the browser will receive the
response to its request. Otherwise, the executive invo-
kes the next variant that will compose its own response.
Since the second variant is the last one, the HTML page
generated on the basis of the response of the second
variant will be forwarded to the client independently
whether it is an error page or a proper web page.

Summary of changes. The original source code was
changed at 19 points, where the visibility of classes and
fields had to be made public for referencing them from
aspects. These changes could not be made from as-
pects.

All other necessary changes, namely 5 structural and
15 behavioral modifications, were carried out by aspects.
Typically, the aim of these modifications was either to
prevent the execution of an action (e.g. initialization or
destruction of a servlet in the jesHTTP variant), or to mo-
dify the data source for an action (e.g. redirecting sock-
et read and write operations to an extra buffer).

The following peculiarities of AOP (that are not fully
supported in the other reflective approaches) were uti-
lized:

• Advices can introduce new attributes in legacy
classes. E.g. a reference to the common servlet
context was added in jesHTTP.

• The execution of an advice may depend on 
the caller method. E.g. initialization of a new
ServerSocket was masked only from the legacy
software. Note that reflective extensions are 
typically applied from the viewpoint of the called
method.

• It is possible to designate the call of a method
in an AOP pointcut. In this way those methods
could also be masked that are not available in
source code form (e.g. System.exit). 
In the case of the ServerSocket initialization, 
this call pointcut was parameterized with 
the name of the caller method.

6. Conclusions

The advantages of the AOP approach manifest directly
if legacy systems or parts of legacy systems have to be
made fault tolerant. In this case the necessary changes
can be made and the selected FT scheme can be app-
lied in a modularized form by aspects. They can be han-

dled separately and implemented without drastically mo-
difying the original source code.

In our paper we identified the conditions of applying
AOP, discussed the problems that arise during the im-
plementation, and proposed solutions. These results may
be used to direct the attention of engineers to those
points of the legacy code that has to be modified by AOP
advices. In our future work we will investigate the inser-
tion of aspects at Java byte-code level to implement the
FT executive in case of commercial off-the-shelf (COTS)
variants.

References

[1] B. Randell, J. Xu: 
The Evolution of the Recovery Block Concept.
In M. Lyu (ed.): Software Fault Tolerance. 
John Wiley & Sons Ltd, pp.1–22., 1995.

[2] A. Avizienis: 
The Methodology of N-version Programming. 
In M. Lyu (ed.): Software Fault Tolerance. 
John Wiley & Sons Ltd., 1995.

[3] K. J. Birman: 
Replication and Fault Tolerance in the Isis System.
ACM Operating System Review, Vol. 19, No. 5,
pp.79–86., 1985.

[4] G. Agha, S. Frolund, R. Panwar, D. Sturman: 
A Linguistic Framework for Dynamic Composition of
Dependability Protocols. In DCCA-3, 
pp.197–207., 1993.

[5] J.-C. Fabre, V. Nicomette, T. Pérennou, 
R. J. Stroud, Z. Wu: 
Implementing Fault Tolerant Applications using
Reflective Object-Oriented Programming. 
In Proc. FTCS-25, pp.489–498., 1995.

[6] G. Kiczales et. al.: 
Aspect-Oriented Programming.
In Proc. European Conf. on Object-Oriented
Programming (ECOOP). LNCS 1241, 
Springer Verlag, 1997.

[7] H. Ossher, P. Tarr: 
Using Multidimensional Separation of Concerns to
(Re)Shape Evolving Software. Comm. of the ACM,
(44)10, pp.43–50., 2001.

[8] L. Bergmans, M. Aksit: 
Composing Crosscutting Concerns Using
Composition Filters. Comm. of the ACM, (44)10, 
pp.51–57., 2001.

[9] I. Kiselev: 
Aspect-Oriented Programming with AspectJ, 
Sams Publishing, 2003.

[10] L. Lengyel, T. Levendovszky: 
Introduction to Aspect-Oriented Programming.
Híradástechnika, Vol. LX, 2005/6, pp.18–23.

[11] Open Service Gateway Initiative, 
http://www.osgi.org

HÍRADÁSTECHNIKA

62 VOLUME LXII. • 2007/1


