Nem-illékony nanokristályos félvezető memóriák

BASA PÉTER, HORVÁTH ZSOLT JÓZSEF, JÁSZI TAMÁS, MOLNÁR GYÖRGY, PAP ANDREA EDIT, DOBOS LÁSZLÓ, TÓTH LAJOS, PÉCZ BÉLA

> MTA Műszaki Fizikai és Anyagtudományi Kutatóintézet, basa@mfa.kfki.hu

Lektorált

Kulcsszavak: nanokristály, memória, memóriatranzisztor, szilícium, germánium, szilícium-nitrid

A cikk röviden tárgyalja a nem-illékony memóriaelemek működési elvét, a méretcsökkentéssel kapcsolatos technológiai problémákat, és azok lehetséges megoldását nanokristályos szerkezetek segítségével. Ismerteti a nanokristályos memóriák előállítási módszereit és az eddigi legjobb publikált eredményeket. Összefoglalja a Si és Ge nanokristályokat tartalmazó MNOS szerkezeteken a szerzők által kapott eredményeket, melyek szerint a megfelelő méretű nanokristályok jelenléte az MNOS memóriaszerkezetek töltésbeviteli és töltéstárolási tulajdonságait is javítja.

1. Bevezetés

A hagyományos félvezető-alapú "nem-illékony" (nonvolatile) elektromosan törölhető programozható csak olvasó memóriák (EEPROM-ok) információtárolása a fém/ szigetelő/félvezető (MIS) térvezérlésű memóriatranzisztor küszöbfeszültségének nagy amplitúdójú "beíró" vagy "törlő" feszültségimpulzusokkal való megváltoztatásán alapszik.

A küszöbfeszültség változása a vezérlőelektróda (gate) alatti szigetelőrétegbe az impulzus ideje alatt injektált és ott befogott elektromos töltés következménye. A beírás és törlés során a töltéshordozók a szilícium hordozó felől alagút effektussal jutnak be a szigetelő rétegbe és vagy egy lebegő elektródán (floating gate) (1. ábra), vagy a szigetelő rétegben lévő csapdákban tárolódnak. Ez utóbbira jellemző példák a fém/szilícium-nitrid/szilícium-dioxid/szilícium (MNOS) (2. ábra) és a polikristályos szilícium/szilícium-dioxid/szilícium-nitrid/szilícium-dioxid/ szilícium (SONOS) szerkezetek, melyekben az injektált töltés a szilícium-nitrid rétegben lévő csapdákba fogódik be és ott tárolódik [1].

Napjaink "flash" memóriáiban elsősorban lebegő elektródás eszközöket használnak, ahol a lebegő gate két szilícium-dioxid réteg közé van beágyazva (1. ábra). Ilyen memóriák találhatók a "pendrive"-okban, memóriakártyákban, MP3 lejátszókban, PDA-kban vagy mobiltelefonokban is. A nem-illékony elnevezés arra utal, hogy az eszköz az információt tápfeszültség biztosítása nélkül tárolja, maga a flash szó pedig arra, hogy működés közben a memóriacellák nagy száma törlődhet egyszerre.

A 2006-os International Technology Roadmap for Semiconductors szerint az egy bit tárolásához szükséges hagyományos NOR memóriacella mérete 2013ban a 2005-ös 0,064 µm²-nek már csak a közel egyhatoda lesz, míg a lebegő elektróda alatti, úgynevezett tunnel oxid vastagsága változatlan marad, 8 nm körüli értéken stagnál. Ez azt jelenti, hogy az eszköz méretét egyre inkább a nagy beíró/törlő feszültségek kapcsolásához szükséges viszonylag nagyméretű áramkörök fogják meghatározni. Ha a tunnel oxidréteget vékonyíthatnánk, akkor egyrészt a beíró/törlő feszültség lenne csökkenthető, másrészt gyorsabb beírás/törlés lenne elérhető.

Azonban a Moore-törvénynek megfelelő rohamos méretcsökkenéssel összefüggésben az egyre vékonyabb, tunnel rétegként használt SiO₂ réteget egyre nehezebb hibamentesen, jó minőségben előállítani. Ennek következtében megnő a rétegben jelenlévő hibahelyek jelentősége. Hagyományos lebegő gate-es memóriatranzisztor esetében az esetleges hibahelyeken keresztül a lebegő gate-en tárolt töltés könnyen elszivároghat.

A lebegő gate-es memóriatranzisztorok kiváltására a közeljövőben két ígéretes módszer ajánlkozik. Az első magának a lebegő gate-nek a kiváltása: ekkor félvezető nanokristályokat használva (a sematikus elrendezés a 3. ábrán látható) a töltés egymástól szigetelő réteggel elválasztott szemcsékben, a nanokristályokban tárolódik, így a hibahelyek csak a közvetlen környezetükben elhelyezkedő nanokristályoknál okoznak töltésszivárgást - a többi szemcse megőrzi az információt [1]. A második egy új szemléletű eszköz bevezetése, ahol egy csatornaréteg fázisállapotát kapcsolgatjuk feszültségimpulzusokkal a nanokristályos és az amorf állapot között, melyek nagy és kis vezetőképességű állapotokat jelentenek. Ez utóbbi eszköz neve a szakirodalomban "phase-change memory", magyarul fázisállapot-váltó memória [2].

Jelen dolgozatban röviden ismertetjük a félvezető nanokristályokat tartalmazó MIS struktúrák előállítási módszereit és nem illékony memória célú felhasználásukat, kitérve saját fontosabb Si és Ge nanokristályokat tartalmazó MNOS szerkezeteken kapott eredményeinkre is.

2. Irodalmi áttekintés

2.1. Mintakészítési módszerek

A legáltalánosabb struktúra a fém (vagy polikristályos Si)/SiO_x/Si szerkezet, ahol a Si nanokristályok a SiO_x rétegbe vannak beágyazva. Szigetelő rétegként a szilícium oxidok helyett Al₂O₃, vagy többrétegű dielektrikum is használható. A Si-on kívül gyakran használnak még Ge, vagy SiGe nanokristályokat is.

Négy fő előállítási módszer létezik. A leggyakrabban használt módszer az ionsugaras szintézis, melynek során Si-ot vagy Ge-ot implantálnak a SiOx rétegbe. A műveletet nagyhőmérsékletű hőkezelés (vagy oxidáció) követi, melynek során végbemegy a nanokristályok kialakulása [1]. Egy másik módszer, amikor többrétegű struktúrát hoznak létre: egy vékony amorf vagy polikristályos Si vagy Ge réteget választanak le SiO₂, vagy Si₃N₄ rétegre. Ezután a Si vagy Ge réteget egy másik dielektrikummal borítják, vagy a Si szemcséket magukat oxidálják. A nanokristályok itt is hőkezelés hatására jönnek létre, ami vagy a párologtatás közben történik, vagy a középső Si vagy Ge réteg leválasztása után, vagy pedig a második dielektrikum réteg leválasztását követően [1,3]. A harmadik módszer szerint egy Si-ban vagy Ge-ban gazdag SiO_x vagy SiN_x réteget választanak le, a nanokristályok képződése pedig a rétegen belül, utólagos nagyhőmérsékletű hőkezelés hatására következik be [1]. A negyedik, legújabb módszer során magukat a Si nanokristályokat, vagy egy Si nanokristályokat tartalmazó SiN_x réteget választanak le különböző kémiai gőzfázisú leválasztási (CVD) módszerekkel [4-6]. Itt a nanokristályok a leválasztás közben alakulnak ki, a módszer nem igényel utólagos hőkezelést.

2.2. Alkalmazás nem-illékony memóriaeszközökben

Mint a bevezetésben említettük, az információtárolás a flash memóriákban térvezérlésű tranzisztorok (FET-ek) küszöbfeszültségének megfelelő feszültségimpulzusokkal történő megváltoztatásán alapszik.

A memóriatranzisztorok legfontosabb jellemzői:

- a beíró/törlő feszültségimpulzusok amplitúdója és időbeli szélessége,
- a memóriaablak szélessége (a "beírt" és "törölt" állapotokat jelentő küszöbfeszültségek közötti feszültségkülönbség),
- a tartósság (endurancia), mely megmutatja, hány beíró/törlő ciklust visel el a tranzisztor degradáció nélkül), és
- a retenció (a küszöbfeszültség változásának sebessége a töltéselszivárgás következtében).
 Az eszközökkel szemben követelmény, hogy minél kisebb feszültségekkel tudjunk minél gyorsabban írni/törölni. Kisebb és rövidebb feszültségimpulzusok hatására ugyanakkor kisebb memória ablak szélességet és gyakran rosszabb retenciós tulajdonságot kapunk. Jelenleg a flash memóriákban egy tranzisztor szükséges egy bit tárolásához, ami a legnagyobb eszközsűrűséget teszi lehetővé mind az illékony (SRAM, DRAM), mind a nem-illékony memóriák (ROM, EPROM, EEPROM) között [1].

Ígéretesek a kisenergiájú ionsugaras szintézissel előállított Si nanokristályos memória eszközökkel kapcsolatban újabban publikált eredmények [1,7-8]. Ennél a módszernél 0.5-2 keV közötti energiákat használnak az ionimplantáció során, amit nagyhőmérsékletű hőkezelés követ. Az így előállított eszközök viselkedése ugyanakkor nem csak az implantációs energiától és dózistól, valamint a hőkezelési paraméterektől függ, hanem a minta felületének az implantáció során bekövetkező szenynyeződésétől és elektromos feltöltődésétől, az oxidréteg vastagságának megváltozásától, a hőkezelés előtti mintatisztítási körülményektől, vagy az iongyorsítás körülményeitől [1,7]. Az említett paramétereket optimalizálva az utóbbi időben a következő eredmények születtek: ±9 V, 10 ms beíró/törlő feszültség hatására 2 Vos memória ablak szélességet kaptak, ami 1,5 millió beíró/törlő ciklus után sem változott, a 10 évre extrapolált memória ablak szélesség pedig 0,4 V [1,7].

Egy másik tanulmányban 1 V-os memória ablak szélességet kaptak ±12 V, 1 µs-os beíró/törlő feszültségekkel, szintén kisenergiás ionsugaras szintézis segítségével előállított eszközökön. A 10 évre extrapolált memória ablak szélessége 0.3 V [8].

2003-ban a Freescale Semiconductor bemutatta a világ első 4 Mbit-es nanokristályos flash memória termékét, majd 2005-ben az első 24 Mbit-es elrendezést [9].

3. Nanokristályos MNOS szerkezetek kutatása

Kutatócsoportunk az MTA MFA-ban Si [6,10-11] és Ge [11] nanokristályokat tartalmazó fém/szilícium-nitrid/félvezető (MNS) [10] és MNOS [6] szerkezetek töltésbeviteli (memória ablak) és töltéstároló (retenciós) tulajdonságait vizsgálta az előállítási körülmények függvényében. Itt a legfontosabb eredményeket foglaljuk röviden össze.

3.1. Motiváció

Az MNOS szerkezetek esetében a bevitt töltés a nitridrétegben lévő csapdákban tárolódik, melyek `a priori` el vannak szigetelve egymástól. Így egy esetleges lokális oxidhiba esetén a teljes töltés nem szivárog el, a beírt információ megmarad. A nitridréteg alkalmazásának további előnye, hogy a nitrid nagyobb dielektromos állandója miatt ugyanakkora rétegvastagságok esetében ugyanakkora amplitúdójú feszültségimpulzus hatására a tunnel oxidban erősebb elektromos tér alakul ki, ami elősegíti a töltésbevitelt.

Ugyanakkor elméleti megfontolások alapján arra számítottunk, hogy ha az oxid/nitrid határfelületre félvezető nanokristályokat építünk be, azok várhatóan javítják mind a töltésbeviteli, mind a retenciós tulajdonságokat.

3.2. Mintakészítés, vizsgálatok

A Si nanokristályos minták esetében az n-típusú szilícium hordozókra tisztítás után először egy 2,5 nm vastag kémiai oxidot növesztettünk HNO₃ oldat alkalmazásával [6,11]. Erre növesztettük alacsony nyomású kémiai gőzfázisú leválasztással (LPCVD) SiH₂Cl₂ segítségével a Si nanokristályokat [6,10-11]. Ezt egy 40 nm vastag Si₃N₄ réteggel borítottuk, melyet szintén alacsony nyomású kémiai gőzfázisú leválasztással állítottunk elő SiH₂Cl₂ és NH₃ keverékből. A középső Si nanokristály réteg leválasztási idejének a hatását vizsgáltuk [6,11].

A Ge nanokristályos minták esetében két fajta kémia oxidot alkalmaztunk tunnel rétegként. Az egyiket a Si nanokristályos mintákhoz hasonlóan salétromsav segítségével állítottuk elő, a másikat pedig H₂SO₄+H₂O₂ segítségével. A Ge nanokristályokat elektronsugaras párologtatással növesztettük. Párologtatás közben a hordozót 350°C-on tartottuk [3,11]. A Ge nanokristályokat 75 nm vastag LPCVD Si₃N₄ réteggel borítottuk.

A szeletek hátoldalán ohmos kontaktusokat készítettünk, az előoldalon pedig kondenzátor fegyverzeteket alakítottunk ki Al párologtatásával és fotolitográfiával. A kondenzátorok felülete 0,64 mm² volt. A memória tulajdonságokat a flat-band feszültség változásának a mérésével vizsgáltuk, ugyanis a kondenzátorok flat-band feszültsége hasonló módon változik a szigetelőben tárolt töltéssel, mint a FET-ek küszöbfeszültsége.

3.3. Eredmények

A Si nanokristályos minták memória tulajdonságait az 1. táblázat szemlélteti, mely a ±20V, 100 ms-os impulzusok hatására kapott kiindulási memóriaablak-szélességet és a retenció mérésekből 1 évre és 10 évre extrapolált memóriaablak-szélesség értékeket tartalmazza a Si nanokristály réteg leválasztási idejének a függvényében. A 0 s leválasztási idő a nanokristály nélküli referencia mintának felel meg. A táblázatból látható, hogy a 30 s leválasztási idővel készült nanokristályos minta esetében mind a töltésbeviteli, mind a töltéstárolási tulajdonságok valamivel jobbak, mint a referencia minta esetében. A 60 s-os Si nanokristály leválasztás rontott a töltéstárolási tulajdonságon. A még hosszabb leválasztási idő drasztikusan rontott a töltéstároláson [10]. Ennek valószínű oka, hogy a nanokristályok már nincsenek teljesen elszigetelve egymástól és így a töltés szétfolyik a nanokristály rétegben.

A Ge nanokristályokat tartalmazó szerkezetek hasonló paraméterei a *2. táblázatban* találhatóak. Itt ±25V, 100 ms-os impulzusokat alkalmaztunk, hogy a legjobb töltésbeviteli tulajdonságot mutató szerkezet esetében (HNO₃, 30 s) hasonló ablakszélességet kapjunk, mint a Si nanokristályos szerkezetek esetében. (Itt vastagabb a felső nitrid réteg, ezért kell nagyobb amplitúdójú impulzust alkalmazni.)

A táblázat alapján látszik, hogy a salétromsavval növesztett oxid réteget tartalmazó minták esetében könynyebb a töltésbevitel, mint a kénsav és hidrogénperioxidos minták esetében. Az is megfigyelhető, hogy a legjobb töltésbevitelt mutató minta esetében (HNO₃, 30 s) a retenció rosszabb, mint a többi salétromsavas mintánál. A salétromsavas 60 s-os minta viszont mind a töl-

1. táblázat

A Si nanokristályos mintákon ±20V, 100 ms-os impulzusok hatására kapott kiindulási memóriaablak-szélesség és az 1 évre és 10 évre extrapolált értékek a Si nanokristály réteg leválasztási idejének a függvényében. A zárójelben lévő számok a 10 év utáni ablakszélességet adják meg a kiindulási érték százalékában.

Leválasztási idő [s]	Memóriaablak kezdeti szélessége [V]	Memóriaablak szélessége 1 év után [V]	Memóriaablak szélessége 10 év után [V]
0	14,0	2,09	0,85 (6,07%)
30	14,4	2,10	0,95 (6,60%)
60	14,6	1,52	0,31 (2,12%)

tésbevitel, mind a töltéstárolás szempontjából jobb, mint a referencia minta. A kénsav és hidrogénperoxid oldattal készült minták esetében mind a 30 s-os, mind a 60 sos Ge nanokristály leválasztás javította a töltésbeviteli és töltéstárolási tulajdonságokat.

4. Összefoglalás

Röviden ismertettük a nem-illékony memóriaelemek működési elvét, a méretcsökkentéssel kapcsolatos technológiai problémákat és azok lehetséges megoldását nanokristályos szerkezetek segítségével, valamint a nanokristályos memóriák előállítási módszereit és az eddigi legjobb publikált eredményeket. Összefoglaltuk a Si és Ge nanokristályokat tartalmazó MNOS szerkezeteken kapott saját eredményeinket, melyek segítségével kimutattuk, hogy a megfelelő méretű nanokristályok jelenléte az MNOS memóriaszerkezetek töltésbeviteli és töltéstárolási tulajdonságait is javítja.

Köszönetnyilvánítás

A munkát részben az Európai Bizottság SEMINANO projektje (az NMP4-CT-2004-505285 számú szerződésen keresztül), részben pedig az OTKA T048696 számú programja támogatta.

Irodalom

- Zs. J. Horváth, Current Appl. Phys. 6 (2006), p.145. és a benne szereplő hivatkozások.
- S. Hosaka, K. Miyauchi, T. Tamura, H. Sone, H. Koyanagi, Microel. Eng. 73-74 (2004), p.736.
- [3] P. Basa, G. Molnár, L. Dobos, B. Pécz, L. Tóth, A.L. Tóth, A.A. Koós, L. Dózsa, Á. Nemcsics, Zs.J. Horváth, J. Nanosci. Nanotechnol. – megjelenés alatt.

- [4] R.A. Rao, R.F. Steimle, M. Sadd, C.T. Swift, B. Hradsky, S. Straub, T. Merchant, M. Stoker, S.G.H. Anderson, M. Rossow, J. Yater, B. Acred, K. Harber, E.J. Prinz, B.E. White Jr., R. Muralidhar, Solid-State Electron. 48 (2004), p.1463.
- [5] K.S. Cho, N.-M. Park, T.-Y. Kim, K.-H. Kim, G.Y. Sung, J.H. Shin, Appl. Phys. Lett. 86, 071909 (2005).
- [6] Zs.J. Horváth, P. Basa, T. Jászi, A.E. Pap, L. Dobos,
 B. Pécz, L. Tóth, P. Szöllősi, K. Nagy,
 J. Nanosci. Nanotechnol. megjelenés alatt.
- [7] P. Normand, P. Dimitrakis, E. Kapetanakis,
 D. Skarlatos, K. Beltsios, D. Tsoukalas, C. Bonafos,
 H. Coffin, G. Benassayag, A. Claverie, V. Soncini,
 A. Agarwal, Ch. Sohl, M. Ameen,
 Microel. Eng. 73-74 (2004), p.730.
 és a benne szereplő hivatkozások.
- [8] C.Y. Ng, T.P. Chen, D. Sreeduth, Q. Chen,
 L. Ding, A. Du,
 Thin Solid Films 25 (2006), pp.504.
- [9] E. Prinz,
 43rd Design Automation Conference 2006,
 San Diego, California,
 http://www.dac.com/44th/44talkindex.html
- [10] P. Basa, Zs.J. Horváth, T. Jászi, A.E. Pap, L. Dobos,
 B. Pécz, L. Tóth, P. Szöllősi,
 Physica E 38 (2007), p.71.
- [11] Zs.J. Horváth, T. Jászi, A.E. Pap, G. Molnár, Cs. Dücső, P. Basa, K. Nagy, L. Dobos, B. Pécz, L. Tóth, P. Szöllősi, T. Szabó, Appl. Surf. Sci., beküldve.

2. táblázat

A Ge nanokristályos mintákon ±25V, 100 ms-os impulzusok hatására kapott kiindulási memóriaablak-szélesség és az 1 és 10 évre extrapolált értékek az oxidnövesztés és a Ge nanokristály réteg leválasztási idejének a függvényében

Oxidnövesztés	Leválasztási idő [s]	Memóriaablak kezdeti szélessége [V]	Memóriaablak szélessége 1 év után [V]	Memóriaablak szélessége 10 év után [V]
HNO3	0	10,9	1,18	0,13
	30	14,5	0,96	0
	60	11,8	1,43	0,33
$\mathbf{H}_2\mathbf{SO}_4 + \mathbf{H}_2\mathbf{O}_2$	0	10,5	0,92	0
	30	11,2	1,17	0,07
	60	11,1	1,2	0,14