
40 VOLUME LXI. • 2006/7

1. Introduction

Nowadays, model-driven system development [3] (MDSD)
is an emerging paradigm in software development. A
main challenge for MDSD is accommodate to the accel-
erating changes of business and technology. Based
on high-level model standards (such as the Unified Mo-
deling Language, UML [12]), MDSD separates business
and application logic from underlying platform techno-
logy.

Platform-independent models (PIM) capture the core
business functionality independently from the underly-
ing implementation technology, which are incorporated
later on in platform-specific models (PSM). The source
code of the system under design is generated after-
wards from such platform-specific models. The success
of the MDSD highly depends on automated model trans-
formations (MT), which generate PSMs from PIMs, and
executable source code from PSMs.

In MDSD, models are frequently captured by a graph
structure, and the transformations are specified as graph
transformations. Informally, a graph transformation (GT
[11,7]) rule performs local manipulation on graph mod-
els by finding a matching of the pattern prescribed by
its left-hand side (LHS) graph in the model, and chang-
ing it according to the right-hand side (RHS) graph.

The main objective of the VIATRA2 (VIsual Automa-
ted model TRAnsformations) framework developed at
the Department of Measurement and Information Sys-
tems at Budapest University of Technology and Eco-
nomics is to provide a general-purpose support for the
entire life-cycle of engineering model transformations
including the specification, design, execution, validation
and maintenance of transformations within and bet-
ween various modeling languages and domains. Since
September 2005, VIATRA2 is part of the Eclipse Gene-
rative Modeling Tools subproject.

Advanced model transformation tools frequently aim
at separating the design of a transformation from its
execution by using high-level model transformation rules
in design time and deriving executable platform-specific
transformer plugins from these high level models. The
role of design-time transformation frameworks (also called
as platform independent transformers PIT) is to ease
the development of model transformations, while the
role of compiled standalone versions of a model trans-
formation (Platform (lang.) specific transformers (PST))
in an underlying platform (e.g. Java) are more efficient
from runtime performance aspects.

Code generators deriving the standalone transform-
ers, are typically implemented in a standard program-
ming language for specific model transformations, thus,
it is difficult to reuse existing code generators to differ-
ent platforms with conceptual similarities (e.g. from Java
to Enterprise Java Beans) or to integrate them into other
MT tools.

The current paper presents a new approach using
generic and meta-transformations [14] for generating
platform-specific transformer plugins from model trans-
formation specifications defined by a combination of
graph transformation and abstract state machine rules
(as used within the VIATRA2 framework).

The essence of the approach is to store transforma-
tion rules as ordinary models in the model space, which
can be processed later by the meta-transformations,
which generates the standalone Java transformer plug-
in. These meta rules highly rely on generic patterns (i.e.
patterns with type parameters), which provide high-level
reuse of basic transformation elements. Graph algo-
rithms used for search plan generation are integrated
as abstract state machines, while the final code gener-
ation step is carried out by code templates.

As a result, the porting of a transformer plugin to a new
underlying platform can be accelerated significantly.

Automatic generation of
platform-specific transformation

ÁKOS HORVÁTH, DÁNIEL VARRÓ, GERGELY VARRÓ*
Budapest University of Technology and Economics

Dept. of Measurement and Information Systems; ha442@hszk.bme.hu, varro@mit.bme.hu

* Dept. of Computer Science and Information Theory; gervarro@szit.bme.hu

Keywords: meta-transformation, generic transformation, code generation

The current paper presents a new approach using generic and meta-transformations for generating platform-specific trans-

former plugins from model transformation specifications defined by a combination of graph transformation and abstract state

machine rules (as used within the VIATRA2 framework). The essence of the approach is to store transformation rules as ordi-

nary models in the model space, which can be processed later by the meta-transformations, which generates the Java trans-

former plugin. These meta rules highly rely on generic patterns (i.e. patterns with type parameters), which provide high-level

reuse of basic transformation elements. Graph algorithms used for search plan generation are integrated as abstract state

machines, while the final code generation step is carried out by code templates. As a result, the porting of a transformer plug-

in to a new underlying platform can be accelerated significantly.

Reviewed

2. Overview of the approach

The proposed workflow of the meta-transformation for
PST generation is summarized in Fig. 1.

In VIATRA2, transformations can be defined by the
combination of graph transformation (GT [7]) and abst-
ract state machines (ASM [4]). The Transformation (XForm)
metamodel (to be discussed in details in Sec. 3.2) con-
sists of an ASM part for control structures and a graph
transformation part for elementary model manipulation.

The steps of the plugin generator transformation are
the following:

• As ASM and GT rules are processed differently, we
separate them in the first step. Since ASM rules are
(semantically) very close to traditional high-level pro-
gramming language constructs, their handling is not dis-
cussed.

• GT rules are processed in two substeps. The LHS
of the rule should be handled as a GT pattern, while
the action part described by the difference of RHS and
LHS (and potentially additional ASM rules).

• For each pattern call initiating a graph pattern match-
ing process, different search graphs are generated.
(See [15] for a detailed discussion of search graph ge-
neration.)

• An optimized search plan (i.e. the traversal order
of pattern nodes) is generated for every search graph
in order to sequence the matching of the GT pattern.

• Finally, Java output is generated by code tem-
plates. For every different implementation platform only
these code templates have to be replaced.

Note that the presented transformer plugin genera-
tion approach is implemented in the VIATRA2 frame-
work, which improves extensibility and portability. In the
rest of the paper, we first provide a brief overview of the
models and transformations used in VIATRA2 (in Sec. 3).
Then, the main part of the paper discusses (in Sec. 4)

the meta-transformation developed for the PST gener-
ation and focuses on the graph pattern matching phase,
as it is the most critical step for the performance of
graph transformation. Finally, Sec. 5 concludes the pa-
per.

3. Models and Transformations
in VIATRA2

3.1. The VPM Metamodeling Language

Metamodeling is a fundamental part of model trans-
formation design as it allows the structural definition
(i.e. abstract syntax) of modeling languages. Meta-
models are represented in a metamodeling language,
which is another modeling language for capturing meta-
models.

The VPM (Visual Precise Metamodeling) [13], which
is the metamodel language of VIATRA2, consists of two
basic elements: the entity (a generalization of MOF
package, class, or object) and the relation (a general-
ization of MOF association end, attribute, link end, slot).
Entities represent basic concepts of a (modeling) do-
main, while relations represent the relationships be-
tween other model elements. Model elements are ar-
ranged into a strict containment hierarchy, which con-
stitute the VPM model space. Within a container entity,
each model element has a unique local name, but each
model element also has a globally unique identifier,
which is called a fully qualified name (FQN).

There are two special relationships between model
elements: the supertypeOf (inheritance, generalization)
relation represents binary superclass-subclass relation-
ships (like the UML generalization concept), while the
instanceOf relation represents type-instance relation-
ships (between meta-levels). By using explicit instanceOf
relationship, metamodels and models can be stored in
the same model space in a compact way.

Automatic generation of platform-specific transformation

VOLUME LXI. • 2006/7 41

Figure 1. Overview of the meta-transformation based generation

3.2. Transformation Language

Transformation descriptions in VIATRA2 consist of
the combination of three paradigms: (i) graph patterns,
(ii) graph transformation (GT [7]) rules and (iii) abstract
state machine (ASM [4]).

Graph patterns
Graph patterns (referred as GT patterns) are the

atomic units of model transformations. They represent
conditions (or constraints) that have to be fulfilled by a
part of the model space in order to execute some mani-
pulation steps on the model. A model (i.e. part of the
model space) can satisfy a graph pattern, if the pattern
can be matched to a subgraph of the model (by graph
pattern matching).

An example GT pattern is depicted in Fig. 2. The GT
pattern of Fig. 2. is fulfilled if there exists a class CS
that has an attribute A and a parent class CP.

Figure 2. Example GT pattern

Graph transformation rules
While graph patterns define logical conditions (for-

mulas) on models, the manipulation of models is de-
fined by graph transformation rules, which heavily rely
on graph patterns for defining the application criteria of
transformation steps. The application of a GT rule on a
given model replaces an image of its left-hand side
(LHS) pattern with an image of its right-hand side (RHS)
pattern (following the single pushout approach [8]).

The meta-model used for the graph transformation
rules in VIATRA2 framework extends the core formalism
by: (i) negative conditions can be embedded into each
other in an arbitrary depth, (ii) supports the use of ASM
rules in the action part of a GT rule, and (iii) supports
the notation of standalone GT patterns.

The sample graph transformation rule in Fig. 3. de-
fines a refactoring step, which moves an attribute from
the child to the parent class. This means that if the child
class has an attribute, it will be moved to its parent.

The rule contains a simple pattern (marked with key-
word condition), that jointly defines the left hand side
(LHS) of the graph transformation rule, and the actions
to be carried out. Pattern elements marked with key-
word new are created after a matching for the LHS is
found (and therefore, they do not participate in the pat-
tern matching), and elements marked with keyword del
are deleted after pattern matching.

Control Structure
To control the execution order and the mode of graph

transformation, abstract state machines [4] are used.
ASMs provide complex model transformations with all
the necessary control structures including the sequenc-
ing operator (seq), ASM rule invocation (call), variable
declarations and updates (let and update constructs),
if-then-else structures, non-deterministically selected
(random) and executed rules (choose), iterative execu-
tion (applying a rule as long as possible iterate), and
the deterministic parallel rule application at all possible
matchings (locations) satisfying a condition (forall).

4. Generation of PST
with Meta-transformations

To give an overview how the automatic PST generation
process can be implemented over model transforma-
tions, three conceptually critical fragments are dis-
cussed in this section. The first example (in Sec. 4.1)
shows how the type of the elements in a GT pattern is

HÍRADÁSTECHNIKA

42 VOLUME LXI. • 2006/7

Figure 3. The GT rule l i f tAttrs

determined by a combination of GT patterns and ASM
rules (using explicit instanceOf relations). The second
example (in Sec. 4.2) gives an overview how the algo-
rithms of the search plan generation are implemented
in the framework. While the third (in Sec. 4.3) shows
how the Java representation of relation (association)
traversal is generated by a code template.

4.1. Processing the pattern elements of
the graph transformation

Our approach is using generic model transforma-
tions on the graph pattern rules presented as models in
the VIATRA2 modelspace. Generic patterns in VIATRA2
use explicit instanceOf relations, which denote type vari-
ables. This approach of the PST generation consists of
two GT patterns SearchPatternGraph, directType and
they are called from an ASM rule processGTPattern.

The meta-pattern SearchPatternGraph
The pattern SearchPatternGraph of Fig. 4. denotes

that the PG is the pattern graph of the GT pattern GTP.
In the transformation model, the PatternGraph is con-

nected to the GTPattern through the BasicGTPattern
Body (BGTPB) entity, along a body and a concrete
Pattern relation.

The generic pattern directType
The pattern directType (depicted in Fig. 5.) is used

to return the direct type of the input parameter X. The
outer (positive) pattern matches the metamodel entity,
which represents the type of X by the explicit ins-
tanceOf relation.

The inner (negative) pattern can be satisfied if the
input entity T has a subType, which is connected to X
by an instanceOf relation. In this case the execution of
the whole rule is violated.

This generic pattern can handle several situations
where essentially the same rule pattern should be app-
lied on objects of different types. The type variables
used in the pattern are instantiated by the instanceOf
relation as concrete entities/relations from the meta-
model (similarly to ordinary pattern variables).

Automatic generation of platform-specific transformation

VOLUME LXI. • 2006/7 43

Figure 4. The SearchPatternGraph GT pattern

Figure 5. The directType GT pattern

The ASM rule processGTPattern
The ASM rule processGTPattern determines the di-

rect type of the elements in the graph pattern PG. Type
entities must be under the input parameter Metamodel
in the containment hierarchy, while PG is the pattern
graph of the input parameter GT pattern InGTPattern.
The steps of the rule are the following:

(i) The choose selects the pattern graph of the GT
pattern InGTPattern with the GT pattern Search-
PatternGraph and puts it into the variable PG.

(ii) The forall enumerates all the combinations of
the elements given in the scope one by one
and tries to match the directType GT pattern.
If a part of the model satisfies the pattern then
its values are stored in variables X and T.

(iii) The ASM rule processEntityBuildSG is called
with parameters PG, X and T in order to add
this new element to the search graph of the GT
pattern PG.

The VIATRA2 transformation rule is as follows:

4.2. Search plan evaluation

As the most critical step for the
performance of a graph rewriting
framework is the graph pattern
matching phase, our approach
uses local search algorithms for
evaluating the traversal order of
the pattern matching. A weighted
search graph is a directed graph
with numeric weights on its edges,
having a starting node connected
to each other node with an edge.
A search tree is a spanning tree of
the weighted search graph. As the starting node has no
incoming edges, all other nodes should be reachable
on a directed path from the starting node. A search
plan is one possible traversal of a search tree. A traver-
sal defines a sequence in which edges are traversed.

The Java code representation of the optimized tra-
versal order is also generated by model transformation,
which consist of three phases:

(i) In the first phase, a weighted search graph is
generated from the input GT pattern also taking
into account all constraints on VPM entities of
the pattern.

(ii) By using Chu-Liu and Edmonds algorithm [5,6]
combined with a simple greedy algorithm,
a low cost search plan is calculated.

(iii) Finally, Java code is generated based on
the search plan (discussed later in Sec. 4.3).

As abstract state machines are widely used to for-
malize algorithms [10], is straightforward to implement
them in VIATRA2. The following example demonstrates
this on the well known greedy algorithm used in the
search plan evaluation to select a low cost search plan
from a search tree.

Simple greedy algorithm
Initially, the list P consists only the starting node.

The algorithm simply selects the smallest edge that
goes out from the search graph nodes that are already
in P, and adds the target of the selected edge as the
last element of P.

The iterate choose construct selects the smallest
edge that leading out of P, by using the ASM function
nodes and values to store the edge with the small-
est weight. Then the second choose selects the target

node of the edge and adds it
to P by setting the value of
the node to P.

The recursion terminates
when the counter of nodes
in P reaches the number of
the nodes in the search graph
(stored in the ASM function
values):

4.3. Source code generation

In this section, we propose a source code generation
technique for model transformer plugins in Java based
on VIATRA2 code templates. The template concept is
similar to the one introduced in the Apache Velocity [1]
language, but uses the formal ASM and GT paradigms
as its control language whose constructs can be re-
ferred by the #() notation.

As an example, we use the template rule print-
TraversalArb, which generates the Java equivalent of a
simple traversal of a relation with arbitrary multiplicity. In
case of arbitrary multiplicity in the traversed direction
(one-to-many or many-to-many), an iterator is generat-
ed to investigate all possible continuations.

HÍRADÁSTECHNIKA

44 VOLUME LXI. • 2006/7

The input of the template is the source (Source)
and target (Target) entities of the relation, the type
(Type) of the target element, the name of the relation
(Relation) and the next (Next) element in the traversal
order. The ASM function name returns the name of the
model element. The steps of the traversal order are
processed recursively by calling the ASM rule
processNextStep in order to generate the Java equiv-
alents of internal code blocks:

5. Conclusion

In this paper, we proposed to use generic and meta-
transformations for generating platform-specific trans-
former plugins from transformation specifications given
by the combination of graph transformation rules and
abstract state machines in the VIATRA2 framework.

The main advantage of our approach is reusability:
only final code generation templates need to be
altered when porting plugins to other object oriented
languages. Up to now, we have a complete implemen-
tation for Java, but we plan to port the plugin trans-
formers to other underlying platforms (e.g, Eclipse
Model Framework, EMF) and to perform numeric mea-
surements on the transformers.

Experimental evaluation of the generated transformer
plugins was carried out in [2] using Enterprise Java
Beans 3.0 [9] as the underlying plugin technology.

The generated transformer plugins were able to han-
dle persistent models stored in relational databases with
several million graph objects. A next challenge for the
future is to integrate transformer plugins to the VIATRA2
framework itself. After successful integration, an opti-
mized compiled version of native Java transformations
can be executed instead of the interpreted version.

References

[1] Apache, Velocity homepage,
http://jakarta.apache.org/velocity/index.html

[2] Balogh, A., G. Varró, D. Varró, A. Pataricza:
Compiling model transformations to EJB3-specific
transformer plugins,
In: ACM Symposium on Applied Computing –
Model Transformation Track (SAC 2006),
pp.1288–1295.

[3] Bettin, J.:
Ensuring structural constraints in graph-based
models with type inheritance,

In: M. Cerioli (editor), Proc. 8th Int. Conference on
Fundamental Approaches to Software Engineering
(FASE 2005), LNCS 3442. pp.64–79.

[4] Börger, E., R. Stark:
“Abstract State Machines. A method for
High-Level System Design and Analysis,”
Springer-Verlag, 2003.

[5] Chu, Y. J., T. H. Liu:
On the shortest arborescence of
a directed graph,
Science Sinica 14 (1965),
pp.1396–1400.

[6] Edmonds, J.:
Optimum branchings,
Journal Res. of the National Bureau
of Standards (1967), pp.233–240.

[7] Ehrig, H., G. Engels, H.-J. Kreowski,
G. Rozenberg, editors:
“Handbook of Graph Grammars and
Computing by Graph Transformation,
Vol. 2: Applications, Languages and
Tools,” World Scientific, 1999.

[8] Ehrig, H., R. Heckel, M. Korff, M. Löwe, L. Ribeiro,
A. Wagner, A. Corradini:
In: [11], World Scientific, 1997. pp.247–312.

[9] Enterprise Java Beans 3.0, Sun Microsystems,
http://java.sun.com/products/ejb/docs.html

[10] Gurevich, Y.:
The sequential ASM thesis,
Bulletin of the European Association for Theoretical
Computer Science 67 (1999), pp.93–124.

[11] Rozenberg, G., editor:
“Handbook of Graph Grammars and Computing by
Graph Transformation, Vol. 1: Foundations,”
World Scientific, 1997.

[12] Rumbaugh, J., I. Jacobson, G. Booch:
“The Unified Modeling Language Reference Manual”,
Addison-Wesley, 1999.

[13] Varró, D., A. Pataricza:
VPM: A visual, precise and multilevel metamodeling
framework for describing mathem. domains and UML,
Journal of Software and Systems Modeling 2 (2003),
pp.187–210.

[14] Varró, D., A. Pataricza:
Generic and meta-transformations for
model transformation engineering,
In: T. Baar, A. Strohmeier, A. Moreira, S. Mellor, editors,
Proc. 7th International Conference on the Unified
Modeling Language (UML 2004), LNCS 3273.
pp.290–304.

[15] Varró, G., D. Varró, K. Friedl:
Adaptive graph pattern matching for model
transformations using model-sensitive search plans,
In: G. Karsai and G. Taentzer, editors,
International Workshop on Graph and Model
Transformations (GraMot 2005), ENTCS, Vol.42,
pp.191–205.

Automatic generation of platform-specific transformation

VOLUME LXI. • 2006/7 45

