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The paper presents a contradiction, originated from a root fallacy, which is commonly accepted and applied in the wave prop-
agation calculations up to now, but yields wrong results. Further, a solving method will be briefly overviewed, by application
of which it became possible to deduce new and exact solutions, to avoid the former errors, and to interpret successfully sev-

eral registrations in space research.
1. Introduction

In the case of many important wave propagation prob-
lems we cannot avoid to create more and more accu-
rate models of the physical phenomena and the struc-
ture of the propagating signals. One of the most sen-
sitive topics is the exact description of the signals rising
in inhomogeneous media, apart from the extremely
strong inhomogenities needing scattering calculations.
The known and commonly applied models (e.g. W.K.B.
description, Airy-functions, Stokes equation, eikonal-
equation, generalized propagation vector, etc. [1]) in-
volve fundamental misunderstanding regarding the
structure of the signal. To enlighten this problem we
demonstrate this contradiction in a simple example.

2. The structure of the signal

As a simple case, let a strictly monochromatic signal
propagate in a linear, isotropic, time-invariant, lossless
medium containing spatial inhomogeneity. In this case,
a part of the signal reflects point by point during going
through the medium, while the amplitude of the forward
propagating signal-part will attenuate. From the simpli-
city of the model it is obvious that the permittivity can
be defined as scalar &(r). Further simplification is assu-
ming the permeability as p,.
Consequently, the form of the signal is:

(_J:(.'_'.,."); (_;“(F)e‘[""f‘ﬁf(*}] (1)

where G means E,B,D,H, functions,  location
vector, tis the time, wis the angular frequency, ¢ is the

phase.
In our case, the forms of Maxwell’s equations are as
follows: U iT = 3 T
VxE =-jou,H,
VA =0, @)
V-(eE )=0
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from which it can be obtained by the known way
that the third and the fourth equations will be automati-
cally fulfilled, if the first two equations are fulfilled, in so
far as the medium is not characterized by distributions
(the functions are derivable continuously).

So, the equations to be solved are the following:

(GXEI )’qu)x ‘rfn = .iw‘?E; >
(ﬁx Fu )’ }6(}0 X Er = —jffJ,H[,R].

Introducing the k =V and k x# =k - notations
(where u is arbitrary vector), G, and ¢ assuming that
(as is usual in the simplest cases) and are real func-
tions, the equation-system to be solved will be disinte-
grated into two groups. The real partis VxH, =0,

VxE, =0; ¥

while the imaginary partis k x H, = —wel,,
T F

(3)

xF, =wu,H,. ©)

(This separation is explained in the literature by the
argumentation that weakly inhomogeneous medium is
considered, in which the variation of the medium-para-
meters is very slow. But it is obvious that this assump-
tion itself means a strong restriction in the validity limits
of these models.)

As this separation automatically results that the law
of the conservation of the energy cannot be fulfilled for
the two parts separately, the W.K.B. philosophy elimi-
nate this contradiction by introducing an additional
condition regarding the constancy of the energy of the
propagating signal.

(4) and (5) are investigated one by one. On the one
hand, solution of (5) leads to the well-known disper-
sion-equation,

kk + mzfpr[j‘ =0, (6)

k* =w’e u,, and k = zw,/eu, (7)

can be obtained for the propagation vector, fore-
casting a forward and a backward propagating solution
as a result. On the other hand (4) delivers a solution,

from that
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completely independent from (5), the solution of which
is always
H, = constant and E,=constant  (8)

for the amplitudes. However, (9) is theoretically im-
possible in an inhomogeneous medium, and leads back
to an obvious contradiction in comparison with (8).

What can be the reason of this contradiction? This
evidently has to be hidden in the structure of the sig-
nal. In the traditional conceptions dealing with inhomo-
geneity the forward propagating and the reflected sig-
nals are taken into consideration during the derivation,
as if they were the solutions of Maxwell’s equations
singly. As it is a well-known fact in the mathematics, the
sum of several independent solutions of a linear differ-
ential equation-system is also a solution of that. But
decomposing a known solution into additive parts, it
cannot be assumed to be generally true, that these
parts could be solutions of the original equation-sys-
tem. The physical picture is clearer. In order to handle
the forward propagating and the reflected signal inde-
pendently, we must consider them to exist alone, as
the solution of Maxwell’s equations (and some coupling
or relation between them can be created during the
computation, by defining additional assumptions). How-
ever, the presence of the inhomogeneity automatically
causes the reflection of the signal, so the propagating
and the reflected signal-parts can appear only and
exclusively together in inhomogeneous media, and not
independently of each other.

To see the problem in more detail, let the applica-
tion of the Stokes equation and Airy functions be exa-
mined [1,5].

As it can be found e.g. in Budden’s book ([1] — chap-
ters 9. and 15.), it is a routine procedure to lead back
Maxwell's equations to the so called Stokes equation
for inhomogeneous cases:

VL, v KqE, =0 9
2 Tha'E, ©)

where o .

g~ =n" (for longitudinal propagation)

n is the refraction coefficient.

As this is well seen in Budden’s deduction, he sup-
poses the starting form of the signal as the sum of the
propagating and the reflected parts:

E =A-e 4+ B-&*

' w
where k. =k, -n=—-n

(10)

(1)

-

In the further deduction Budden states, that this
signal form shown in (12) is used during solving the
Stokes equation, the known solutions of which are the
Airy-functions.

But in the followings Budden substitutes back the
forward and backward propagating parts into Maxwell’s
equations separately, obtaining formally identical equa-
tions. After this he solves Maxwell’s equations also se-
parately, for the forward propagating and the reflected
signals, and not for the sum of them.

However, as we mentioned above, the solution of
Maxwell's equations can be only and exclusively the

resultant sum of the two signal-parts, because these
signals cannot appear and fulfill the equations inde-
pendently in the presence of spatial inhomogeneity.
Let us control Budden’s calculations for the resultant
sum of the two signal-parts from (12), writing back their
sum into the Stokes equation.

Considering Budden’s assumption, whereas A and
B are constants (although we must emphasize that this
means strong restriction in the validity of the model) let
(12) be rewritten into the Stokes equation. In this case
the following will be yielded:

A =-B e

This leads back to an obvious contradiction again,
as from (13) A and B cannot be constants. Budden’s
solution therefore regards the forward and backward
propagating signals independently, which cannot be
assumed in inhomogeneous medium (and originally
Budden has neither assumed.

If A and B are not constants and we write back (12)
into the Stokes equation, the given forms will more
widely differ from Budden’s results, as no such differ-
ential equation will arise, the solution of which could be
the Airy functions, but a more complicated relation can
be written between A and B:

d4 , dn\ d*4 -
=2i—(Fk,q)-jA Fhk,— |+ —|-e* +
i I)J( -¢] ¢l

(12)

(13)

+ 2id—8(-¢k“q)+ iB iknﬁ +d-{3 etk _

This relation on the one hand is not identical with
the one deduced by Budden, and on the other hand,
this results in an unsolvable underdetermined mathe-
matical description.

By our investigation it turned out obviously, that the
inhomogeneous computing methods using the Stokes
equation involve implicitly the wrong and contradictive
assumption, according to which the propagating and
the reflected signals can exist and can be deduced
from Maxwell’s equations independently. This conclu-
sion is valid independently from the nature of the sig-
nal (monochromatic or UWB transient).

3. Method of
Inhomogeneous Basic Modes (MIBM)

As it was enlightened in details above, a wrong app-
roach referring to the structure of the signal can cause
fundamental inherent inconsistency in the solution.
How could it be possible to avoid this? We have to
assume such signal structure, which contains the resul-
tant sum of all the possibly existing signals in each spa-
tial and temporal point along the propagation path. We
have to start from the point that only and exclusively
this resultant sum can satisfy Maxwell’s equations, but
its parts (modes) independently cannot. This approach
is the Method of Inhomogeneous Modes (MIBM, [2]).
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To show the method, let us consider a linear, time-
invariant, bi-anisotropic medium, where for the field-
strengths one can write the followings:

D = 5(F)E +7(F)H,
B =v(F)E +u(F)H.

Supposing monochromatic functions, the general
form of the signal is

G = ZHI{F}' Gy (F)exp f(or= ¢,(F)).
=1

where a,(r) is a general envelope function depend-
ing on space, n is the number of the possible modes.

Substituting (16) into Maxwell’s equations and app-
lying some mathematical simplifications, the following
equations to be solved are yielded (16):

(14)

(15)

n

2 %0“‘"; - 1@, )>< ga +§mwf_{; —lf?; xﬁJ:ijm(ﬁ; +'ﬁ:)
2 ﬁ(lnﬁ'l = .ic{'}rrf )X I’(_‘.' + 6}"{5:&& i IEr X E ]= “i I(U(FFH * .'ITE:)

where 0 dInG,, dInG,,
dh, X,
T - d InG,, 0 _dInG,, |
e ox, o, d
_d InG,, dInG,, 0
dx, x,
- (17)
K, =Vy
. Vo=V &,

. dInG,,,
Vm(’nf o = . -

dx

Investigating (17) a very important feature can be
recognized. This equation-system contains the whole
solution arising in inhomogeneous medium, without any
restriction. The final terms on the left side of the equa-
tions and the terms on the right side are completely
identical with the ones valid for homogeneous case,
while the first two terms on the left side are new; do not
appear in homogeneous medium. As it seems to be
reasonable to look for the solution in a form leads back
to the known for homogeneous case, the further way
of thinking is based upon this perception.

Let the inhomogeneous basic modes be defined in
such a way that they deliver the solutions of the equa-
tion-parts remaining in homogeneous case, separately.
But we must keep it in sight the fact, that these basic
modes are not solutions of the full Maxwell’s equation-
system shown in (17), they fulfill just a part of it. But for
homogeneous medium they trace back to the known
solutions, a sin this case the first two terms disappear.
Let the definition of the generalized propagation vec-
tor (K, = V¢,) be the solution of the following disper-

sion relation, as follows
|[1Tf+ oR)T (K- ov)+ (-)3§|= 0. (18)

_ So, the inhomogeneous basic modes belonging to
K;are the solutions of the equations below:
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(ﬁ_" x H, )= —m(ﬁ +&H,)
(A_’J xﬁ)= oWV, +;T§J)
Now, as an essentially new step differing signifi-
cantly from the former methods, let the inhomoge-
neous modes given on the presented way be substi-
tuted into (17), into the full form of Maxwell’s equations
free from any eliminations. The envelope functions and
the phase functions remain unknown variables. The parts
remaining in homogeneous case now are cancelled
out (as the inhomogeneous modes are solutions of
these parts), the remnant equations are called as “cou-
pling equations”, as these will deliver the missing un-
known parameters, they describe the relation among
the modes and the excitation:

2 %(]n ar’ e j(pur' )X !-7.’ + 6”.!’1]![._{! ]= Of
2 ﬁ(]n a, - j(prn )X ‘F“r + 6}(]‘:’[!:1?“: ]: 0’

By solving the coupling equations we can obtain the
whole solution, all the simultaneously arising modes and
the connection among them. This means in an inho-
mogeneous medium the resultant sum of the forward
propagating and the reflected signal-parts, and their
connection to the excitation as well.

(19)

(20)

4. Solution of Maxwell’s equations
in the presence of distributions

Now, let the problem be examined in which the medium-
parameters change suddenly at several opened or
closed A, surfaces not crossing each other (Fig. 1). Let
the variation of the medium-parameters within the V,,
volumes between the surfaces be continuous func-
tions, which connect to each other by steps at the sur-
faces. This case is the variation of medium-parameters
describable by distributions (functionals) [3].
Considering further strictly monochromatic electro-
magnetic signals, and supposing exp j(wt — ¢) type
solutions in volumes V,,,, the forms valid for each volume

are i
(_i,.=[2<'_f,} =[E(:,‘e"“---)(;”,’ei‘f'*'“-)} )

Figure 1. The structure of the medium
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Furthermore, introducing the known 1(x) Heaviside
(unit-step) and &(x) Dirac-delta distributions, 7(2,,. 4,,)]
notes the distribution the value of which changes from
0 to 1 at the surface r=r(p,.q,)- The #(p,.q,) vector
is the parameter of surface A,,. Let gate-functions be cre-
ated from 1[F(p,.q,)] unit-steps belonging to surfaces

A, on the foIIowing way:

s, ={1F(p,..q,.)1-17(p,.q,)] .

the value of that is 1 between A,
where 0.

By the application of the rules of derivation on these
gate-functions, and keeping in mind that the generalized
derivative of 1(x) is d(x), one can get such a function the
value of which differs from 0 only at the surfaces:

Vs (F)=

b[-’ =k {pm—l“qm— I }]r}llm—l_
where
Mym is the outward directed normal vector of A,

The whole solution is yielded again by the applica-
tion of MIBM.

(22)
.;and A,, and else-

olrF-F(p,.q)n,, . (23)

s, =0
s(Fi= 0

@

a) b)

Figure 2. The distribution functions

(= ZJ/-————

Defining the gate-functions on a way shown on Fig.
2., one can write in each volume s,(r)=1 the whole
sum of all the possibly existing basic modes, and sum
these in the complete examined as it follows:

— .! n
(; = E 'qm (F )[2 (;:jl
m=| = m

where Mis the number of the continuous V,, ranges.

The basic modes can be determined within each
V,,on the way presented in Part 3., from the equations
below:

(24)

Kwr HH’H = UJ( m{ m K Hmr (25)
im X ! im =@ (Vm “im “ HH‘H L]
e = \=-I{F = -l
[\m.’ + 0K, ) . ( [X”” - OV, ) T O %‘m|_ 0 (26)

For the determination of the complete solution the
obtained basic modes have to be substituted back into
Maxwell’s equations, and by solving the coupling equa-
tions the parameters still unknown can be delivered:

27 OR{30] o
%"

;M{ .
Evs,,,(;

See {57 (5] o
’{

2
LR O

5. Results of the new model

V S, (r

m-]

Let us apply the presented method for monochromatic
and transient (Ultra Wide Band, UWB) signals propa-
gating in arbitrarily strongly inhomogeneous medium
[4,5,6].

Let the medium be magnetized, anisotropic plasma
(frequently occurring in the space research). Apart from
the detailed overview of the deduction, here we show
only several final solution formulas, illustrating that the
new model modifies the structure of the signal essen-
tially, in a large measure, in comparison with the former
solutions.

In monochromatic cases (too), the solution given by
MIBM is iterable by successive approximation. The
zero-ordered solution of this is the well-known W.K.B.

formula.
E (x)= C{z,(x) (28)
where C = constant
HJ e d(]n7t]) —J- A(\)t.ﬁ
,i Z du (29)
"( ) du

The following, first order approximation gives more
accurate formulas, and the coupling of the energy bet-
ween the signal-parts can be well seen in the structure
of the formulas:

- _‘r UI 1[17”] .l: :'..fr

B .= F. 7lI
: ; ) { o du

30
{ ]‘"u’(an“] sils ] } (30)
. —=¢ """ dw |du
L dw

Considering impulse propagation [7]

Lo (w)= f{f-]“(f,f+£]d."}e'-‘""df

the solution for the reflected signal in the first step of
the successive apprOX|matlon is the following (32):

Ban)=- 2 |

0 (f (] 1 ok (nr , @ ) s B Zj:f; k(v Jav Ji- wr+ [k (ho )cm]
k(). m)f 2k(w,m)  ou

(31)

dule" ° 'dw
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where
k(@) /k(x =0.0)

Cw)=1_ (o) !

\.,((-‘J)+ ;\(\ =0, !’-U) (33)

0w, (o i(x)+wiloi(x)+wl(x) - wz:l

k(x,0) = %\

(ug(.‘(}— wz
(34)
It can be well seen point by point in the structure of
the solution, by the integrals nested into each other,
that the propagating and the reflected parts of the
energy are in closed connection with each other, vary-
ing point by point.

6. Summary

In this paper a fundamental theoretical misunderstand-
ing of the known and commonly used inhomogeneous
wave propagation models was presented. This error is
originated from the wrong assumption regarding the
structure of the signal.

We briefly outlined the Method of Inhomogeneous
Basic Modes (MIBM), by the application of that this contra-
diction and error cannot arise, and really accurate and
right wave propagation description can be obtained.

The importance of the presented problem and solv-
ing method is great, as the wave propagation results of
the last 100 years have to be revised, and opens the
way toward such new, exact descriptions, by the appli-
cation of which the interpretation of our knowledge and
ideas regarding our global surrounding environment may
go through serious development. This exact determina-
tion of the reflection will influence the research in many
fields (space research, radar-technique, telecommuni-
cation etc.).
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