
1. The limits of the MIDI standard

The main function of MIDI is the synchronisation of the
system beyond the transmission of control informa-
tions required for sound synthesis [1]. Devices utilizing
MIDI protocol are equipped with 3 connector types.
The IN connector is physically connected to the OUT
connector of the adjacent unit, and the THRU output
allows the user to form a chain topology of MIDI devi-
ces by sending the inbound data right to the device’s
THRU port. Using this method supports only connec-
tion topologies of limited structure without using auxi-
liary units.

It is also a quite common problem to combine more
outputs into one input, which can only be solved with
an external device, the MIDI Merger, too. Considering
the maximal length of a few meters of the connection
cables, the devices to be connected cannot be placed
in an arbitrary order and distance, and further consider-
ations have to be made if more than 15-20 devices are
connected because of the increasing size, price and
delay of the routing and switching units. We will not de-
al with the limits of the standard concerning the imple-
mentation henceforth.

2. Applying Bluetooth for
MIDI connections

Among others Bluetooth is one of the inexpensive wi-
reless solutions for the replacement of MIDI connec-
tions. The power consumption, the sufficient range and
the prosperous noise resistance of the single units al-
so make it applicable for this purpose. MIDI connec-
tions formed with Bluetooth can eliminate not only the
cable but the other devices needed for the connection,
so that they can be integrated into such existing de-
vices. Although presented in a different way in other
works [4], this paper describes a new method for reali-
zing MIDI connections beyond the functionalities a MI-
DI cable offers.

Choosing the proper connection
and the packet type for MIDI
The current 1.2 standard of Bluetooth supports one

master and seven active slaves per piconet, although
much more than seven slaves can be connected to it
in parked state [2,3].

The master controls the channel access. All the ot-
her participants’ clocks in the piconet are synchronized
to the clock of the master and every unit is synchroni-
zed to the master in hopping frequency, too. The mas-
ter may start a transmission only in even slots and a re-
ception only in odd slots, while the slaves may do this
vice versa: they may start a transmission only in even
slots.

The above apply only for the initiation of the trans-
mission: it can take up more than one slot, but the
length must be an odd number of slots.

We choose the ACL type
transmission for the MIDI app-
lication. One piconet sup-
ports one such type of data
channel. The standard defi-
nes seven packet types for
ACL connections, the maxi-
mum number of transmis-
sible bytes are shown in
Table 1.

We use the M-type pac-
kets for the data transfer, be-
cause they utilize 2/3 FEC
encoding for error detection
and correction, while the H
packets feature neither error
checking nor correction.

Hub-based topology and its advantages
The hub-based topology (Figure 1.) of the Blue-

tooth piconet facilitates the MIDI application. With bro-
adcast type messages and correct settings any con-
nection topology can be implemented, including the
connections modifying the data stream, too.

VOLUME LX. • 2005/6 13

New protocol concept for
wireless MIDI connections via Bluetooth

CSABA HUSZTY, GÉZA BALÁZS

Budapest University of Technology and Economics, Dept. of Telecommunications and Media Informatics
info@midioverbt.com

Key words: wireless MIDI (Musical Instrument Digital Interface), Bluetooth

This paper describes a new protocol concept for wireless MIDI connections via Bluetooth. For the practical appliance, the

protocol design supports nearly arbitrary connection topology. We show the plans of a generic Bluetooth-based MIDI system

and describe the main ideas of its data transmission protocol, calculate its latency and investigate its limits of usability, whi-

le suggesting a few possible extensions to this system to be further realized.

Table 1.
Maximum

data transfer rate
in bytes of BT packets

Reviewed

Figure 1. Hub-based topology

When setting up the connection we already know
which slave unit will serve as a MIDI In and which as a
MIDI Out. The Bluetooth based implementation includes
the collateral possibility of looping back one’s output to
itself as an input – which is usually called ‘MIDI Echo’.

Implementing basic MIDI connection types
To be able to create any type of connection topo-

logy, we have to implement the logical connections re-
placing the MIDI In, MIDI Out, the MIDI Thru Box (Hub),
MIDI Merge, Echo and Patch Bay, either are they devi-
ces or functions.

1. MIDI Out/In (MIDI cable)
The data of the MIDI devices connected to the sla-

ve units get to the other device(s) indirectly via the mas-
ter device. The user assigns the In and Out ports. The
master device polls the first device, which sends its MI-
DI data back to the master. This data will be broadcast
by the master to every active slave. Based on the set
topology the S1 unit may ignore the incoming data
(see Figure 2.).

2. MIDI Hub (Thru Box)
It is an easy task to connect one input to multiple

outputs with these logical connections. After being pol-

led by the master, the S1 slave sends its MIDI data.
The only output port in this system is S1, so the polling
ends after this point, and the master passes the data
in a broadcast message to every slave. Since S1 is not
configured as an input, it will discard the incoming MIDI
messages. The constant delay of the arriving data with
even more than one slave is a collateral advantage.

3. MIDI Merge Box
To unify two or more inputs in one output the mas-

ter polls S1, which responds by sending its MIDI data.
This data is temporarily stored in the master device for
the broadcast packet, which is to be sent later, after
polling S2 and getting its data. Slaves not configured
as an input will discard the received data. There is ne-
ed, however, to process the MIDI data streams before
they are being merged for keeping its consistency, but
the S3 could easily do this locally before sending the
data to the MIDI device.

The suggested protocol concept and its timing
The logical units of the MIDI data, the messages

have to be collected and split into packets when using
the Bluetooth system. The MIDI bytes in the packets
transmitted in a time unit (MIDI slot) are always broken
on a message boundary. One exception exists: the
System Exclusive message (SysEx), which can be of
an arbitrary length. The incoming MIDI bytes are read
one after the other from the MIDI Out ports by the pre-
defined topology, which then form packets of constant
length for each Out ports and are sent to the appro-
priate In-s. In some cases the packets have to be pro-
cessed in order not to exceed the MIDI bandwidth (e.g.
when merging). Such a cycle is called a MIDI slot from
now on, which must have a firmly constant length in ti-
me. Considering the possibility of the reception of a va-
riable number of bytes in a MIDI slot, the packet length
and the delay time have to be computed for the case
of the maximal byte count.

The timing of a MIDI slot (using DM3 packet with sin-
gle transmission) is as follows:

1. The master polls the first slave that connects to a
MIDI device with an Out port in the 0th Bluetooth
(BT) slot [5].

HÍRADÁSTECHNIKA

14 VOLUME LX. • 2005/6

Figure 2. Realizing MIDI connections

2. The addressed slave replies with a DM3 packet
of constant length containing the received MIDI
data. This transmission begins in the 1st and ends
in the 3rd Bluetooth slot. If there are more than
one Out-s in the system, the described process
from step 1. is applied to each of them.

3. 2 empty BT slots follow, and then a DM3, DM5 or
DH5 type of packet (depending on the number of
the Out-s) is broadcast to every slave. The mas-
ter device starts to construct the broadcast pac-
ket to be sent while still receiving data from the
slaves (the UART ports of the BT modules and
the Host Controllers are full-duplex), so there is
only a little time to wait for the insertion of the da-
ta of the last slave. Since an even BT is coming
after the data packet of the last slave, the system
has to wait for the next even BT slot before it can
send the broadcast message. This causes an
additional delay of 2 BT slots.

4. Finally one empty BT slot comes, because the
next polling sequence may start only in an even
BT slot and the broadcast packet may not be re-
sponded. The whole cycle repeats from step 1.

To sum up, the amount of the needed BT slots are:

NBT_SLOTS = 4*O + 2 + x + 1

where O is the number of Out-s and x is 3 in the
case of using DM3 and 5 when using DM5 packets for
broadcasting.

Let B be the length of the MIDI slot in bytes:

B = SMIDI · TBT,

where SMIDI = 3125 bytes/s, the transfer speed of
the MIDI line and TBT = 625 µs, the length of a BT slot.

In the interest of the planning of the timing let us
calculate the maximum need of byte count to be trans-
mitted. In the case of 1 active Out the maximum num-
ber of the transmitted MIDI bytes in a MIDI slot is:

B1_OUT = SMIDI · TBT · (1+1+2+1+1) =

= 6*SMIDITBT = 11.71875 ⇒ 12 bytes

where we rounded the sum up, considering the
worst case. The terms of the sum are: 1 poll from mas-
ter to slave, 1 response from slave to the master, 2
empty BT slots, 1 broadcast from the master to the sla-
ves and 1 empty slot, which is 6 BT slots altogether, the
length of the MIDI slot.

The above calculated value is 2 bytes less than the
effective value, because most MIDI messages consist
of 2 or 3 bytes, and it can happen that a 3-byte mes-
sage follows after the 11th byte. The effective maximal
length of a BT packet is such:

BTO_TRANSMIT = B1_OUT + 2 = 14 bytes.

To be able to keep the timing constant both at high
and low loads, let the length of the transmitted packets
be constant, regardless of the number of useful bytes

in them. The trasmission needs 2 more administrative
bytes (a header and a footer). The one-byte header
has to contain the number of the Outs, so that the mer-
ger can use this to identify the stream in which it has to
insert the incoming bytes, while the one-byte footer in-
dicates the end of the packet, which is implemented by
using a byte not defined in the MIDI standard. So

BMERGER = BTO_TRANSMIT + 2 = 16 bytes

is the number of bytes that is to be transmitted du-
ring a MIDI slot. Since the DM1 packet can contain ex-
actly 18 bytes of useful data and lasts for 1 BT slot, it
is ideal to transmit this amount of information with this
type of packet.

It is pretty plausible to use a Bluetooth module with
an UART-type Host Controller Interface (HCI) because
of its flexibility and simplicity, so from now on we show
the timing values calculated specifically for UART bas-
ed systems.

To be fair with the calculations by systems built with
UART HCI BT modules it must be considered that the
packet formatting needs 5 more bytes (1 byte ACL
identifier, 2 bytes of connection handle, the ID of the
master-slave physical attachment on-the-air, 2 bytes of
flags and a packet length information, which is calcula-
ted without the 5 header bytes). These bytes will not be
sent on the air, so we do not have to change the pac-
ket type. So 21 bytes have to be transmitted to the BT
module, and the other module also will transmit this
amount of bytes to its host.

With a 1 382 400 bits/s UART this process lasts for
152 µs (1 start bit + 8 data bits + 1 stop bit = 10 bits.
TUART = 10*21 / 1382400 = 152 µs), this is 24,3% of the
length of the BT slot.

This calculation gives 506 µs for 2 Out-s with DM3
packets, which is still less than the length of a BT slot -
which means that the timing will remain accurate.

In the case of 3 Out-s the situation is as follows:
B3_OUT = 20*SMIDITBT = 40 bytes, because the broad-
cast packet must last 5 BT slots, as the length of the
packet is 132 bytes which already needs the DM5 pac-
ket. The transmission lasts for 354 µs for the slaves
and 998 µs for the master.

The length of the broadcast is 204 bytes in the case
of having 4 Out-s in the system. The transmission times
are 405 µs and 1519 µs, respectively.

After all there are no obstacles to use 5 Out-s in a pi-
conet, but the broadcast packet cannot be realized
using M packets here because of the 295 bytes to be
transmitted. The transmission times are 463 µs and 2177
µs for the slaves and for the master. The latter is 3.48 in
terms of BT slots, so the timing is still not vulnerable.

More than 5 Out-s are not applicable in the same pi-
conet because of the bandwidth limits of the current
Bluetooth technology.

Unfortunately in the respect of data protection and
security the solutions above are pretty bad – neverthe-
less their delay is the best without doubt – because
they transmit everything only once to the recipient. The

Wireless MIDI over Bluetooth

VOLUME LX. • 2005/6 15

2/3 FEC coding improves the noise margin a bit, but
the connection quality is still the function of the spatial
placement and distance of the units. The most trivial
method to minimize the packet loss probability is to use
multiple transmissions.

Using 1 Out we can retransmit the data even 3
times; in this case the delay time is 16 ms, but it is still
only 21 ms with 4 times of retransmission.

With 2 Out-s the maximum number of retransmis-
sions is 2 (including the polling, the responses and the
broadcasts); the delay time is then 18.75 ms.

Having 3 Out-s enables 2 transmissions for the pol-
ling, but does not allow us to retransmit the broadcast
messages any more if we want to keep the timing. How-
ever, the broadcast can be repeated one more time if
we use DH5 packets. With more than 3 Out-s none of
the retransmission techniques can be applied with the
data speed of the current Bluetooth standard.

The above are summarized in Table 2. We remark
that using 1 Out port the throughput limit of Bluetooth
enables 14 times of retransmissions without affecting
the time stability of the MIDI slot.

Figure 3. The structure of the broadcast packet

The structure of the MIDI packets
Assuming maximum 3 Out-s Figure 3. shows the

structure of the broadcast packet.
The DATA markings stand for the MIDI data of the

each individual slave units. The termination mark of the
data and the broadcast packet is the 0xF9 and 0xFD
byte respectively, which are not defined in the MIDI
standard. If the MIDI devices utilize the not defined
0xF4, 0xF5, 0xF9 or 0xFD MIDI bytes which are used
for packet formatting, the packet headers, the timing
and the structure of the protocol has to be modified to
be able to transmit these bytes, too.

The maximum length of the broadcast packet is 238
bytes (DH5 packet, 3 Out-s, double transmission). The
contents of the poll message are indifferent.

Reducing the overall latency by creating a scatternet
Using more masters simultaneously the latency can

be decreased by distributing the Out units among the
different masters. Unfortunately it is not easy to avoid
masters transfer on the same frequency, although BT

HÍRADÁSTECHNIKA

16 VOLUME LX. • 2005/6

Table 2. The latency of the data transfer – we suggest using the properties of the highlighted field

1.2 implements a method to avoid this, so there is even
more need for multiple transmissions, which increases
the latency at the same time. Creating arbitrary connec-
tion topologies is then realized by connecting the pico-
nets, which is known as scatternet. It can be formed in
more ways from piconets: a slave unit may operate as
a master in the other piconet, or individual masters
might be wired via a high-speed link.

Considering the MIDI implementation the first met-
hod is nowise adequate, because the multifunctional
S8/M2 device (see Figure 4.) can only serve one of its
functions at a time – synchronism cannot be achieved.
However this raises another problem: what happens if
the slave units of Out functionality are not balanced
equally in the several piconets. As we could see in the
discussion of the protocol timing, the latency increases
and the parameters of the protocol implementation to
be applied (e.g. number of retransmissions, type of BT
packets) vary with the increase of the amount of the
Out-s.

We find most expedient building a system where the
end user does not have to reconfigure the whole sys-
tem manually when putting a new master in operation
and also does not have to set up the new connection
topology in an uncomfortable and lengthy manner.
When distributing the Out-s we have to strain after that
each master gets the least Out-s possible and that the
In-s receiving data from the same Out-s get into the sa-
me piconet, so that the least data have to be transmit-
ted outside the piconet.

3. Conclusion

This paper made a proposal for a Bluetooth protocol
conception and investigated its feasibility for implemen-
ting wireless MIDI connections. In spite that the imple-
mentations using Bluetooth did not succeed so far, the
system described here fully exploits the more incre-
asing throughput of Bluetooth. It allows acceptably sa-
fe data transfer while maintaining constant latency.

A system based on the contents of this paper can
be easily extended by new units so that the overall
latency can be decreased while the number of client
units can be increased.

The most important conclusions for the feasibility of
the system are:

(1) retransmission – at least for 2 times is needed to
achieve a safer connection,

(2) a piconet may contain up to 3 MIDI Out-s, whe-
re only two Out-s are suggested to transmit data
to the same piconet,

(3) there is no need for use of broadcast messages
if there are no Out-s connected to a piconet, the
DM3 packet is ideal for 1 or 2 Out-s, delay times
of them are 16.25 ms and 18.75 ms, respecti-
vely, with a different number of retransmissions
for each; while in the case of 3 Out-s, the DH5
packet should be used which results in 23.75 ms
latency, and

(4) 3 masters at most can be tied together in the
same area while maintaining a sufficient data re-
ception probability if using Bluetooth 1.1. This
does not apply for the 1.2 standard, which can
implement piconets with arbitrary distribution of
the 79 frequency channels.

References

[1] MMA MIDI Specifications, 1983-2003.
[2] Specification of the Bluetooth System, v1.1
[3] Specification of the Bluetooth System, v1.2
[4] J. Keniston, S. Sturdivant (2003):

Wireless MIDI Network Implemented Via Bluetooth
[5] R. Mettala: Bluetooth Protocol Architecture, v1.0

(Bluetooth White Paper Document # 1.C.120/1.0)

Wireless MIDI over Bluetooth

VOLUME LX. • 2005/6 17

Figure 4. Scatternet with multifunctional device Figure 5. Scatternet by high-speed link

