
1. Introduction

The TCP SYN attack is made possible because esta-
blishing a TCP connection involves a so-called three-
way handshake. The client starts the connection by
sending a packet with the SYN flag set; it also specifies
an Initial Sequence Number (ISN). The server replies to
this with a packet that has both the SYN and the ACK
flags set; it contains an acknowledgement for the ISN
of the client and the ISN of the server. The connection
is finalized when the client replies to this message with
an ACK packet that acknowledges the ISN of the ser-
ver.

In order for the server to be able to verify that the fi-
nal ACK packet is indeed a reply to the SYN ACK, it
has to compare the acknowledged sequence number
with the ISN it gave the client; thus, it is necessary to
establish a state when the SYN ACK packet is sent
and to maintain it for some time: either until the final
ACK arrives, or until it times out.

The attacker thus merely needs to send copious
amounts of SYN packets (perhaps using spoofed sour-
ce addresses). He or she ignores the SYNACK packets
of the victim and never finalizes the connection. After a
while, the finite connection backlog of the victim will be
full and no further TCP connections to the attacked
port will be possible.

2. Existing solutions

Some vendors (e.g. Cisco) offer routers that claim to of-
fer protection against SYN floods. Some of these proxy
the TCP handshake: they only send SYN packets to
the protected server if they already received the final
ACK. For the connection to work, the sequence num-
bers must be mangled on each subsequent packet of
the session (because the router had to choose an ini-
tial sequence number for the connection, and the ISN
of the server is bound to be different). These routers
typically also have shorter timeouts on half-open con-

nections and thus are indeed less vulnerable to SYN
floods. It is important to note however that these ap-
proaches don’t solve the actual problem, they merely
increase the cost of a successful attack. It is still neces-
sary to allocate finite resources (memory) for each con-
nection. The only difference is that the attacker has to
deplete the memory of the router, not the server.

Another suggested solution was to randomly drop
SYN packets using a RED scheme [6]. Like shorter time-
outs, RED also only makes the attack more expensive,
but not impossible.

There are very general and thus somewhat heavy-
weight ways of dealing with flooding and congestion in
general; one of these is described in [1].

An ingenious and widely deployed defense against
SYN floods are TCP syncookies [3]. Syncookies work
by sending a carefully crafted, cryptographically strong
ISN back to the client in the SYN ACK packet, so that
the ACKed sequence number in the final ACK packet
is enough to validate the connection. No state is esta-
blished and no memory used until the final ACK arrives.
It is unfeasible for the client to guess a valid ACK se-
quence number and thereby spoof a connection witho-
ut receiving a SYN ACK packet from the server first.

Detecting SYN floods is a different problem. One of
the proposed solutions is described in [4] – while a sta-
teless, “dumb” device does have its merits, the problem
with this particular approach is that it can only help fil-
ter the flood if the device is located near the attacker.
This means it would have to be deployed at every ISP
worldwide in order to be useful. Failing that, the device
can only detect that a flood is in progress but can’t tell
us who the perpetrator is.

3. Problems with syncookies

However, using syncookies has drawbacks. First of all,
a connection established using syncookies cannot use
large windows and can only use a fixed set of Maximum
Segment Size (MSS) values. Second, syncookies take

44 VOLUME LX. • 2005/6

Analyzing of RESPIRE,
a novel approach to automatically blocking

SYN flooding attacks
ANDRÁS KORN, JUDIT GYIMESI, DR. GÁBOR FEHÉR

Budapest University of Technology and Economics,
Department of Telecommunication and Mediainformatics, HSNLab

korn@chardonnay.math.bme.hu, gj309@hszk.bme.hu, gume@eik.bme.hu

Key words: attack, counting, flooding, syncookies

A few years ago, numerous major web sites were successfully brought down using an attack called SYN flooding. A number

of methods for combating SYN floods have been proposed, many of which are widely deployed. In this paper, we describe a

possible enhancement to some of these techniques; a way to automatically detect, isolate and filter SYN floods while conser-

ving resources on the victim.

Reviewed

time to compute: Bernstein suggests using the Rijnda-
el algorithm to generate the ISN. Third, they magnify
the effect of the SYN flood by responding with a flood
of SYN ACK packets – possibly to unwitting third par-
ties, if the flood uses forged source addresses. Thus,
syncookies can actually make the situation worse by al-
lowing “bounce flooding”.

Therefore, even though syncookies ensure continu-
ed operation of a service even when under attack, it
still makes sense to use a packet filter to prevent the
offending SYN packets from reaching the server at all.

The approach presented in this paper is comple-
mentary to syncookies. The cookies can ensure that
the service remains available while the RESPIRE (Re-
source Efficient Synflood Protection for Internet Rou-
ters and End-systems) mechanism reacts to the flood
and blocks it; however, as shown below, reaction times
are so short that syncookies are not strictly required.

4. How RESPIRE works

In contrast, our approach requires no additional da-
ta-gathering equipment to be deployed. Rather, it ma-
kes use of the data the victim itself must collect anyway
in order to be able to provide TCP service.

The victim has a plethora of useful information we
can use to determine whether we are under a SYN flo-
oding attack; for example, we probably are if any of the
following conditions are met:

– the number of incoming SYNs per second
exceeds a threshold;

– a TCP backlog queue gets filled,
so we have to start sending syncookies;

– the number of half-open connections exceeds
a threshold;

– there is a disproportional difference between
the number of SYN ACK packets sent out and
ACK packets received.

RESPIRE as described here relies primarily on the
last heuristic, but using a combination of all of the abo-
ve is possible with minimal modifications.

Note that it would be possible to compare the num-
ber of arriving SYN packets to the number of inbound
connection-finalizing ACK packets. However, in order to
identify ACK packets that are indeed the last packet of
a handshake, we need to track all TCP connections
anyway, which involves analyzing the SYNACK packet
and recording its ISN. Based on this information, we
could reconstruct the SYN anyway, so processing the
SYN packets separately seems redundant. However, in
order for us to be able to rely on counting outbound
SYNACK packets, the victim needs to be able to re-
spond to a sufficient number of SYN flood packets with
SYNACKs. Syncookies guarantee this ability, but if
they can’t be used for some reason, we must choose a
backlog size that allows enough SYNACK packets to
be sent for RESPIRE to identify the attackers before
the backlog fills up. If this cannot be done, we can still

count inbound SYN packets instead of outbound
SYNACKs, but still need to process outbound
SYNACK packets as well because we need their ISN.

So, to sum it up: it makes sense to count inbound
SYNs instead of outbound SYNACKs if the protected
server can use neither syncookies nor a sufficiently lar-
ge backlog queue.

When we are under a SYN attack, the best we can
do is to ignore the SYN packets of the attacker. The
simplest way to accomplish this is to set up firewall ru-
les that block SYN sent by the attacker; this means that
our most important objective is identifying the ad-
dress(es) the attacker uses. We could only do better
than this by “pushing” the filtering towards the attacker
along the network route his packets traverse towards
us using pushback [5] or a similar mechanism.

Analyzing of RESPIRE

VOLUME LX. • 2005/6 45

Glossary

A.B.C.D/E
This is a shorthand notation for an IP subnet where the
first E of 32 address bits identify the network, with the
remaining bits identifying a node within that network.
For example, the Budapest University of Technology
and Economics uses the 152.66.0.0/16 network. “E” is
commonly referred to as the “size” of the network. The
smaller E is, the more nodes the network contains.

ACK
One of the flags used in TCP. Indicates that the packet
contains an acknowledgement of previously received
data.

cookie
Used to denote cryptographically generated data that is
used in authentication.

DoS
Abbreviation of “Denial of Service”. DoS attacks try to
disable or sabotage a service.

SYN
One of the flags used in TCP. If set, the packet is refer-
red to as a “SYN packet”. The TCP handshake starts
with the client sending a SYN packet.

SYNACK
The second packet of the three-way TCP handshake is
commonly called a “SYNACK packet”. It has both the
SYN and the ACK flags set.

port
A two-byte endpoint identifier that is used by TCP and
UDP to distinguish between network flows related to a
single IP address.

RED
Random Early Drop. A congestion control mechanism
that avoids congestion by dropping some packets befo-
re the network becomes congested.

spoofing
Forgery (of the source address of a packet).

sequence no.
Every data unit sent using TCP has a sequence number:
basically the number of bytes transmitted so far plus a
random offset determined at connection setup. The ran-
dom offset makes connection forgery more difficult.

Historically, it used to be possible to forge just about
any source address on a packet, so isolating the sour-
ces would not have been possible. By now, however,
most networks have reverse path filters or are using ot-
her mechanisms to filter packets that are obvious fa-
kes; therefore, an attacker can typically only forge add-
resses within one (or a handful of) class C network(s).
We note that RESPIRE fails if the attacker can spoof
any source address; in fact, it can exacerbate the situ-
ation by blocking legitimate clients in an attempt to
block the attacker. Combining RESPIRE with spoof de-
tectors like hop-count filtering [2] can significantly redu-
ce this risk.

5. Anatomy of a SYN Flood

The typical attack scenario today is that the attacker
has access to a number of computers compromised
previously and now under his control – commonly refer-
red to as “drones” – in several subnets around the
world, and instructs all of them to launch an attack in
concert, effectively mounting a distributed denial of ser-
vice (DDoS) attack. To make filtering the packets more
difficult, the drones use spoofed addresses, but every
address is within the same netblock as the real address
of the drone; otherwise, the edge router of the net-
block would discard the packets.

Note that if the magnitude of the SYN flood is suffi-
cient to flood the entire downlink of the victim, the at-
tack is no longer a SYN attack but a generic bandwidth
depletion attack that happens to use SYN packets; it is
not our goal to deal with this scenario here.

Identifying the attacker
As mentioned earlier, we assume that during a SYN

flood, the ratio of the number of outgoing SYN ACK
packets to the number of incoming handshake-finis-
hing ACK packets is going to be much larger than one.
Note that most SYN ACK packets that go unacknow-
ledged are sent to the attacker; thus, we can identify
the attacker by finding the subnet with the most outgo-
ing SYN ACKs per incoming ACKs.

A naive way of doing this would be to count the
SYN ACK and ACK packets going to and coming from
each class C subnet in a large table with 224 (16.7 mil-
lion) entries. It is easy to see that this would be gross-
ly inefficient; most of the counters would be zero, and
most of those that are positive would only indicate be-
nign behaviour. Finding the attacker would require loo-
king at every entry in the table.

6. RESPIRE in detail

MULTOPS [7], the algorithm RESPIRE is loosely ba-
sed on, addresses this problem by storing the coun-
ters in an efficient, dynamically expandable hierarchi-
cal data structure that exploits the hierarchical nature

of IP space: a 256-ary tree is constructed to hold the
counters.

The root of the tree contains two counters, initiali-
zed to zero, and 256 pointers, initialized to NULL. One
of the counters, Synack_Out, counts the SYN ACK
packets leaving the system. The other counter, Ack_In,
counts the valid ACK packets (ones that finish TCP
handshakes) entering the system.

After at least Synack_Min SYN ACK packets have
been sent, the counters are consulted after each furt-
her Synack_Num SYN ACK packets are sent out. The
tree structure makes this a relatively cheap operation to
carry out. Because the number of tree levels is at most
four, four divisions and comparisons and eight incre-
ments must be carried out per SYN ACK packet. For
this reason, we recommend setting Synack_Num to
one.

Sites with very large amounts of traffic can reduce
the overhead by increasing Synack_Num at a small
cost in flood detection speed and accuracy. Instead of
deterministic sampling, stochastic methods can be
used, or Synack_Num can be adjusted dynamically
based on the amount of traffic received; however, the-
se variations have no impact on the fundamental ope-
ration of the algorithm.

If the ratio of Synack_Out to Ack_In exceeds the
value of the parameter Rmax (a value of 1.5 or more is
recommended), then in the last sampling period, the
number of outgoing SYN ACK packets outnumbered
the number of incoming ACK packets at least 1.5 to 1.
This should not happen under normal circumstances,
so we assume that we are under attack.

If we are under attack, we begin expanding the
tree. For each Synack_Num subsequent outgoing SYN
ACK or incoming ACK packet, we note the remote IP
address A.B.C.D. If the root node pointer A is NULL, we
allocate a new node with the same structure as the
root node and link it to root→A. All SYN/ACK traffic as-
sociated with A.0.0.0/8 is from now on counted in both
the root node and in the counters of root→A.

If root→A already exists, we check if
A→Synack_Out ≥ Synack_Min[L1] and if

root→A→Synack_Out
root→A→Ack_In

> Rmax

If so, A.0.0.0/8 is probably one of the sources of the
attack. We “zoom in” further by creating A→B if it
doesn’t already exist and so on until A→B→C exists.

The Synack_Min parameter can be different for
each tree level. Decreasing the limit on the lower levels
makes attack isolation faster but slightly less accurate.
To compensate this, it would be possible to increase
Rmax. We plan to investigate such fine-tuning possibili-
ties in a future paper.

If A→B→C exists, has at least Synack_Min[L3] SYN
ACK packets associated with it and the ratio of its co-
unters exceeds Rmax, A.B.C is assumed to be an attac-
king subnet and is blocked, i.e. no further incoming
SYN packets are accepted from A.B.C.0/24.

HÍRADÁSTECHNIKA

46 VOLUME LX. • 2005/6

How this blocking is done is beyond the scope of
this paper. The possibilities include, but are not limited
to:

– Adding the filter to TCP stack of the OS kernel.
– Using the built-in packet filtering mechanisms of

the underlying operating system, if any.
– Using a mechanism like pushback [5]

to request filtering from an upstream router.
Naturally, these blocks should be temporary. After

Block_Timeout minutes (15 recommended), they can
be removed. This value should be chosen so that it is
slightly longer than the typical flood is expected to be;
it is unwise to set it too high, because having too many
packet filtering rules puts a strain on the device that do-
es the filtering. Also, continuing to block a subnet after
the flood is over could result in blocking legitimate cli-
ents.

Once we find and block an attacking subnet, we re-
move its node from the tree; since we blocked it, we
won’t be receiving any further packets from it anyway,
and we subtract its package counters from the coun-
ters in its parent nodes. This is done so that in the pa-
rent nodes the packet ratios more closely reflect the ex-
pected new distribution, where packets from the newly
blocked subnet will no longer enter the system. This al-
lows us to more accurately decide whether there still
are other attacking subnets.

Once every Prune_Interval (2 seconds in our simu-
lation), we check if the tree contains suspicious nodes
(with counter ratios in excess of Rmax). If so, we zero their
counters. We remove all other nodes from the tree, ex-
cept, obviously, the root node.

Only zeroing suspicious nodes instead of removing
them allows us to more quickly identify them as attac-
kers during the next Prune_Interval, because we don’t
have to wait for Synack_Min packets to accumulate in
their parent nodes as the lower level node already
exists.

We zero the counters because we are only interes-
ted in ongoing flooding activity; we do not want past
suspicious behaviour of a subnet to bias our future de-
cisions. Unfortunately, this means that an attacker with
a high number of distinct class C networks under her
control can insinuate a “slow SYN flood” into the protec-
ted system; i.e. she can send less than Synack_Min[L3]/
Prune_Interval packets per second from each subnet,
so that none of them are identified as individual flood
sources and blocked, but their cumulative effect on the
service is detrimental nevertheless.

In this case, we can classify the nodes as “above
suspicion”, “slightly suspicious” and “definitely suspicio-
us”. Nodes are above suspicion if their counter ratio is
smaller than an Rlegit value (1.1 or even 1.05). These
nodes we can remove from the tree at Prune_Interval
boundaries. Slightly suspicious nodes have counter ra-
tios between Rlegit and Rmax. We zero the counters of
these nodes but don’t remove them yet. A node is de-
finitely suspicious if its counter ratio exceeds Rmax but
it didn’t yet accumulate Synack_Min packets.

We don’t even erase the counters of such nodes. It
is reasonable to expect that after a while the nodes as-
sociated with the attackers will satisfy the criteria of fil-
tering.

Figure 1. below shows an example RESPIRE tree.
The two columns inside the nodes represent the relati-
ve amounts of SYN ACK and ACK packets respectively
(but not an exact count). The nodes 92.0.0.0/8 and
96.0.0.0/8 sent approximately as many ACK packets
as we sent them SYN ACKs, so they are probably be-
nign. The darker nodes on the left, 171.0.0.0/8 and
171.85.0.0/16, are the suspicious ones. Note that the
root node is also “suspicious”; this is what tells us that
we are under attack.

Figure 1. Example of a RESPIRE tree

RESPIRE Memory Usage
In order to avoid memory exhaustion attacks aga-

inst RESPIRE, the total number of tree nodes must be
limited. One node occupies 2x64 + 256x64 bits: the two
counters and the 256 pointers, assuming a 64-bit archi-
tecture. This adds up to 2064 bytes, or half that, about
one kilobyte on more common 32-bit computers. The
maximum number of nodes that could be created if no
limit were enforced is 16777216 + 65536 + 256; thus,
the total amount of memory used by the tree structure
could increase to up to about 32.5 gigabytes (half this
on 32-bit architectures), which is impractical to store
and manage.

Our simulation showed that more than 150 nodes
are seldom required even when the attackers com-
mand rather large address spaces. If we assume an
unrealistic case where 200 different class C networks
are used to flood the victim, and these all reside in dif-
ferent A blocks, only 600 nodes would have to be allo-
cated, adding up to slightly more than one megabyte
in size. Thus, limiting the amount of nodes to about
500 seems safe.

What to do when the limit is reached? If a new node
is to be created beyond the 500th, find the least suspi-
cious node under the root node and remove it and its
children. If the root node only has one branch, conti-
nue the search on level A; obviously the single A node
must have more than one branch, or we could not ha-
ve 500 nodes in total. (More sophisticated methods co-
uld be used to find nodes to delete, but they would be
more expensive.)

Analyzing of RESPIRE

VOLUME LX. • 2005/6 47

7. RESPIRE reaction time

In this section we will try to estimate the reaction time
of the algorithm using mathematical methods. Let us
first assume that we are dealing with a single attacking
class C subnet. The calculations can be generalized to
apply to more complicated cases, except “slow floods”,
which were discussed earlier.

In cases where multiple class C subnets are attac-
king, we can aggregate the times needed for each at-
tacking subnet to be banned. This will be the worst
case, because usually we should be able to ban seve-
ral subnets in one go.

We assume that the attacking SYN packets arrive
with an intensity of Ψ packets/sec. The legitimate traffic
can be described as a λ parameter Poisson process,
since legitimate users are independent. If we assume
that burstiness is minimal, outbound SYNACK and in-
bound ACK packets likewise resemble Poisson proces-
ses, because the time needed for the computer to
compose a SYNACK packet from an incoming SYN re-
quests is approximately constant. This way, the Round
Trip Time (RTT) does not cause a significant error in this
approximation.

Even though the ACK packets arriving in a time in-
terval are not necessarily the replies to the outgoing
SYNACK packets of the same interval, the expected
value of their number should be almost equal; with Po-
isson processes, we can expect a similar number of
events in intervals of the same length, regardless of
when the intervals start.

Let ∆t be the time the attack begins after a Prune_
Interval boundary. Two conditions are tested by the al-
gorithm:

and

The first inequality is independent of ∆t; thus, if the
above assumptions hold, we recognize an attack as
soon as Synack_Min is exceeded. The condition of de-
tection thus is:

Ψt ≥ (Rmax –1) ⋅λ l

Thus the time needed for each tree level is:

Naturally, detection takes longer if, while counting, a
Prune_Interval ends, because all counters are zeroed.
Fortunately, counting can be resumed at the same tree
depth we left off, because parent nodes are not eras-
ed. Using the indicator function I{A} which returns 1 if
condition A is met and 0 otherwise, both cases (i.e.
crossing an interval boundary or not) can be written in
one equation. The condition tests whether the Prune_
Interval the counting started in is different from the one
it is supposed to end in. More than one boundary can-
not be crossed; if the criteria of detection are met, we
detect the flood in either one or two intervals.

Simplifications are possible by recognizing that if
detection cannot be finished in the interval it started in,
the time remaining until the next boundary is less than
∆t’level. In the next interval, we start counting again,
and will take approximately ∆t’level seconds to identify
the attacker. The time spent at a tree level can thus be
estimated by:

∆tlevel ≤ 2⋅ ∆t’level

The probability of crossing an interval boundary is
smaller if we set the interval length larger. A compro-
mise must be found: the desire to only detect on-going
attacks requires the interval to be small, whereas reac-
tion times are better if intervals are longer.

When the root node indicates attack, we start buil-
ding the tree. This procedure, along with the examina-
tion of the nodes, their manipulation, counting etc. do
not cause a relevant time overhead, because packet
transmission times are typically several orders of mag-
nitude larger.

In order to better estimate the time spent at each
tree level, we need to introduce a parameter “a” that in-
dicates what fraction of the legitimate traffic originates
from a given subnet as we move down the tree. Assu-
ming that every subnet is responsible for an equal por-
tion of the whole traffic would mean that packets from
a specific class A subnet make up only about 1/256th of
all the incoming SYN requests. For a class B subnet,
the amount would be 1/2562, for a class C subnet,
1/2563. Naturally, this will not be true in practice. One
reason is the distribution of IP addresses. At the A le-
vel, a significant portion of the address space is reser-
ved for special purposes. The B and C address spaces
are also unequally used, but the situation is not as bad
as at level A. Thus an approximation where we use the
parameter only at the level A, and the lower levels are
taken to be homogeneous, appears to be acceptable.
The value of “a” will vary, but probably be somewhere
between 16 (local server used mostly within a relatively
small country) and 128 (busy global server).

Total reaction time is the sum of the time spent at
each of the four levels. These, if we needn’t cross any
Prune_Interval boundaries, and are using different Sy-
nack_Min values for each level, can be written as fol-
lows:

HÍRADÁSTECHNIKA

48 VOLUME LX. • 2005/6

level
level

level

=

The overall time needed obviously equals:

∆T = ∆troot + ∆tA + ∆tB + ∆tC

Let us consider the case where all legitimate SYN
packets come from different class A subnets than the
attacking ones. This gives us the worst case, since de-
tection time depends only on the time needed to col-
lect at least Synack_Min SYN packets – if the attack
can be recognized at all. Under these circumstances
we need not assume anything about the distribution of
legitimate traffic among the subnets. We obtain:

Reaction time when the algorithm crosses an inter-
val boundary at each tree level can be written as:

Please note that although reaction time seems to in-
crease as Prune_Interval increases, its expected value
actually decreases, as the earlier equations indicate.
The reason is that when the interval is longer, the pro-
bability of reaching the interval boundary decreases.

Let us now give a rougher, but more compact ap-
proximation. According to our earlier observations, the
time needed at each level is less, than double the time
that would be required if no interval crossing took pla-
ce. Total reaction time is thus smaller than the time we
get by assuming that every level needs as much time
as the level that needed the most time.

Note that reaction time decreases as attack inten-
sity increases. Reaction is practically immediate in the
case of extreme floods, which cause the most damage.

This corroborates the results of the simulations; see
below.

8. Simulation results

In order to analyze the performance of RESPIRE, we
also ran a simulation [8]. For the sake of completeness,
we sum up the results in this paper as well.

We simulated a busy SMTP server that has 62.8 ac-
tive connections and 12.6 new connections per se-
cond on average. 300 simulated terminals were used
to represent legitimate clients that randomized their IP
before each connection. We also planted 8 attackers
into the system who flooded the server with SYN pac-
kets. Using these attackers we modelled a distributed
SYN attack. The state machine implemented in the at-
tackers was different from the ones in the normal cli-
ents. The attackers use spoofed source addresses that
are uniformly distributed across an entire subnet, the
base address of which is a random value. The subnet
mask is chosen randomly between 16 and 24; attacks
that use entire /16 subnets should be very uncommon
in practice, but we wanted to be generous with the at-
tackers in order to put RESPIRE to a harder test. Each
attacker performs one SYN attack of random length
and intensity.

Table 1. (on the next page) summarizes some of the
numerical results of the simulation.

Note that attacks #5 and #6 appear twice. This hap-
pened because these attacks lasted longer than the ti-
meout for the firewall rules (15 minutes), so after the ru-
les expired, these attacks had to be blocked again.
“Unfiltered packets” shows the number of flood packets
that passed RESPIRE by before the filtering rules took
effect. The other columns should be pretty self-expla-
natory.

Let us now compare simulation results with our mat-
hematical predictions.

Attacker #3 has a subnet of 4096 addresses (16
adjacent class C networks). This means we will see 16
suspicious class C nodes in the tree, all descendants
of the same class B node. If the attacker chooses the
source addresses of his packets uniformly, each of the-
se nodes will account for 1/16th of the total flood inten-
sity, that is, 3660.19 pps. Down to level B we can act
as if we only had a single attacking class C:

Analyzing of RESPIRE

VOLUME LX. • 2005/6 49

If we also wish to account for the possibility of crossing interval boundaries, the equations become more complex:

root
root

l

=
t

A
A =

t

B
B =

t

C
C =

t

C

t

=T 4 · tp – tt +

level

level λ level +

At level C, we obtain:

The total predicted time is thus 0.065 s which is a
good estimate of the measured 0.045 s. The two met-
hods produce comparable results.

Using the same methods, we can compute the pre-
dicted reaction times for all attacks: 0.635 s, 0.011 s,
0.65 s, 0.012 s, 0.338 s, 0.17 s, 0.032 s.

We needn’t modify our upper estimate if several no-
nadjacent class C subnets start attacking at almost the
same time. While this decreases the time needed for
the root node to become suspicious, it doesn’t influen-
ce the lower levels because the attackers reside in dif-
ferent class A nets. In our estimate, we used the time
spent at the level where we spent longest, which cer-
tainly isn’t the root node. Thus, the fact that the root
node needs less time doesn’t impact the rest of the cal-
culations.

Naturally it can happen that the distribution of spo-
ofed source addresses is non-uniform, which causes
us to detect one attacking class C subnet before anot-
her. If some class C subnets use a substantially smal-
ler attack intensity, total time taken can increase. Note
however that in this case, the more damaging part of
the flood has already been filtered, so it’s acceptable
to spend slightly more time blocking the rest.

9. Conclusion

In this paper, we introduced RESPIRE, one of several
ways to combat SYN-floods. It appears to be a very
lightweight solution that nevertheless filters SYN floods
quickly and reliably. Additionally, it also reduces the
amount of collateral damage a SYN flood can cause.
Its memory requirements are very modest, rising above
a few kilobytes only when under attack.

We suggest that RESPIRE be deployed alongside
syncookies. A reference implementation for Linux is
currently undergoing beta testing and will soon be rele-
ased.

References

[1] Ratul Mahajan, Steven M. Bellovin, Sally Floyd,
John Ioannidis, Vern Paxson, Scott Shenker,
“Controlling High Bandwidth Aggregates in the Network”
Computer Communications Review 32:3,
July 2002, pp.62–73.

[2] Cheng Jin, Haining Wang, Kang G. Shin,
“Hop-Count Filtering:
An Effective Defense Against Spoofed DDoS Traffic”,
Proc. of the 10th ACM conference on Computer and
communication security, 2003, pp.30–41.

[3] Daniel J. Bernstein, “SYN cookies”,
http://cr.yp.to/syncookies.html, 1997.

[4] Haining Wang, Danlu Zhang, Kang G. Shin,
“Detecting SYN Flooding Attacks”,
Proceedings of IEEE InfoCom, 2002.

[5] John Ioannidis, Steven M. Bellovin,
“Implementing Pushback:
Router-Based Defense Against DDoS Attacks”,
Network and Distributed System Security Symposium,
February 2002.

[6] Livio Ricciulli, Patrick Lincoln, and Pankaj Kakkar,
“TCP SYN Flooding Defense”,
Comm. Networks and Dist. Systems Modeling and
Simulation Conference (CNDS’ 99), 1999.

[7] Thomer M. Gil, Massimiliano Poletto, “MULTOPS:
a data-structure for bandwidth attack detection”,
Proc. of the 10th Usenix Security Symposium,
August 2001.

[8] Gábor Fehér, András Korn,
“RESPIRE – A novel approach to automatically
blocking SYN flooding attacks”,
Proceedings of Eunice 2004, pp.181–187.

HÍRADÁSTECHNIKA

50 VOLUME LX. • 2005/6

Attack First packet Subnet Packet rate Unfiltered Reaction
No. (s) size (pps) packets time (s)

Table 1. Attacker act ivi ty

