
1. Introduction

Most of the real-life problems concern very complex
systems, whose exact properties, inside functioning
and operation are unknown. Such problems are often
found in the field of medical research and diagnosis, in
industrial and economic problems, etc. During the ope-
ration of such systems a large number of input and out-
put data samples may be collected, which can be pro-
cessed to extract knowledge or to create a model of
the system. This is called black-box modeling.

The goal of data mining is to extract implicit, previo-
usly unknown and useful information from large data
sets accumulated in databases or data warehouses.

The tools most commonly used in data mining con-
tain many different soft computing techniques, inclusi-
ve of neural networks [1],[2]. Neural networks can be
effectively used for nonlinear function approximation
(regression) problems. This paper deals with some spe-
cial types of networks, namely Support Vector Machi-
nes [3],[4]. The main idea of support vector machines
is to map the complex nonlinear primal problem – or to
be exact, the data samples – with the use of nonlinear
transformations into a higher dimensional space, where
a linear solution can be found.

The main advantage of this method is that it gua-
rantees an upper limit on the generalization error of the
resulting model. Another important property of the met-
hod is that the training algorithm seeks to minimize the
model size and creates a sparse model. This is a trade-
off problem between model complexity and the appro-
ximation error that can be is controlled by a hyper pa-
rameter.

The biggest problem with the traditional SVM is its
high algorithmic complexity and memory requirement,

caused by the use of a quadratic programming. This
shuts out large datasets and data mining. Many diffe-
rent solutions have been introduced to overcome this
problem. These are mostly iterative solutions, breaking
down the large optimization problem into a series of
smaller tasks. The different “chunking” algorithms differ
in the way they decompose the problem [5-7].

Another possibility to use the Least Squares Sup-
port Vector Machine, where the algorithmic problems
are tackled by replacing quadratic programming by a
simple matrix inversion. The price paid for this simplicity
is the loss of sparseness, thus all samples are embodi-
ed in the resulting – and, therefore, large – model.

Data mining problems incorporate very large data
sets; therefore it is extremely important that – in con-
trast to traditional LS-SVM – the size of the resulting
model must be independent of the training set size.

In the sequel, we propose some modifications for
the LS-SVM that allows us to control the network size,
while at the same time they simplify the formulations,
speed up the calculations and/or provide better results.

In the field of black-box modeling, there are two ge-
neral problem types that must be discussed: (a) func-
tion approximation (regression), and in case of dynamic
systems (b) time series prediction.

Function approximation
The available data set is analyzed to find, and de-

termine mathematical relations among them. In case of
N p-dimensional samples one must find how one of the
variables (which is mostly the known output) depends
on the p-1 others (or any subset of them). In this case
there is no ordering (sequence – e.g. time) in the data,
the system is expected to be static, thus the output de-
pends only on the actual inputs.

8 VOLUME LX. • 2005/12

Least Squares Support Vector Machines
for Data Mining

JÓZSEF VALYON, GÁBOR HORVÁTH

Budapest University of Technology and Economics,
Department of Measurement and Information Systems

{valyon, horvath}@mit.bme.hu

Keywords: Support Vector Machines, Least Squares Support Vector Machines, function approximation, time series prediction

Due to the extensive use of databases and data warehouses; it is very easy to collect large quantities of data from any as-

pect of life. The analysis of these data may lead to many useful or interesting conclusions. Data mining is a collection of met-

hods and algorithms that can effectively be used to discover implicit, previously unknown, hidden trends, relationships, pat-

terns in masses of data. Classical data mining uses many methods from different fields, like the foundations of linear alge-

bra, graph theory, database theory, machine learning and artificial intelligence. In this paper, we address the problem of

black-box modeling, where the model is built based on the analysis of input-output data. These problems usually cannot be

addressed analytically, so they require the use of soft computing methods. We focus on the use of a special type of Neural

Network (NN), the least squares version of Support Vector Machines (SVMs), the LS-SVM. We also present an extension of this

method, the LS2-SVM, which enables us to deal with large quantities of data. Using this method we present solutions for func-

tion approximation, time series analysis, and time series prediction.

Time series prediction
It is assumed, that the system has a memory (e.g. it

contains feedback connections), so it is dynamic. This
means that in time series prediction problems, the input
and output data must have an ordering and the model
constructed should represent the dynamics of the pro-
cess. This way a proper model can continue a data se-
ries by predicting the future values.

This problem can be generalized, since the predic-
tion may be done along any variable (not only the ti-
me). Most of the real life systems are dynamic, where
the output depends not only on the inputs, but the cur-
rent state of the system. This case can also be hand-
led as a regression (function approximation), but the in-
put variables are extended to include earlier inputs
and/or outputs.

Section 2 shows a common way to convert a time
series prediction problem to a function approximation
one. Section 3 describes the LS-SVM regression, and
the proposed LS-LS-SVM (the LS2-SVM). Section 4 of
this paper contains some experiments and then finally
the conclusions are drawn.

2. Creating a data set
for dynamic problems

In a time series prediction problem, a series of output
values changing in time must be predicted, based on
some earlier values and sometimes some other inputs.
In cases like this, the approximating model must also
have some dynamics. The easiest way to achieve this
is to take a (usually nonlinear) static model and extend
it with some dynamic components (e.g. delays or feed-
back paths). Probably the most common solution for
adding external dynamic components is the use of tap-
ped delay lines, as shown below.

Figure 1. A static system that is made dynamic by delays

As it can be seen in the figure, the static system can
be made dynamic, by extending the inputs with delays.
The N dimensional x vectors are expanded to N+K di-
mensions, by incorporating certain past input and out-
put values in the new model input.

(1)
Where

The method described above is very general, since
it allows different delays for all inputs and the output. In
practice this is usually simplified:

– by the use of the same delays for
all input components,

– by using a sliding window (e.g. the last n samples)
instead of custom delays,

With the use of this extended input vector, the origi-
nally dynamic problem can be handled by a static reg-
ression. After training in the recall phase the model’s
output is also calculated based on an extended input
vector. This means that the result must be calculated
iteratively, since the previous results may be needed as
an input to predict the next output.

3. Function approximation

There are a large number of different methods for func-
tion approximation. These methods can be organized
by many different aspects, but based on the field of
use and the implementation, the following characteriza-
tion is emphasized:

• Linear regression
• Non-linear regression
This categorization is especially important, because

the kernel based methods discussed here transform
the nonlinear regression problem to address it in a line-
ar manner as a much easier linear regression.

The problem is the following in both cases:

Given the training data set, where re-
presents a p-dimensional input vector and is the
scalar target output, our goal is to construct a y = ƒ(x)
function, which represents the dependence of the out-
put di on the input xi.

Besides the well known analytic methods (line-
ar/polynomial regression, splines etc.), the function ap-
proximation problem can also be solved by neural net-
works [1],[2]. The described LS-SVM can be conside-
red as a special kind of neural solution [8].

As mentioned earlier, Support Vector Machines use
nonlinear transformations to transform the input sam-

Least Squares Support Vector Machines...

VOLUME LX. • 2005/12 9

ples to a higher dimensional space, where a linear so-
lution is constructed. Whilst doing this, the SVM selects
a subset of the samples – the support vectors – as re-
levant for the solution and discards the rest. This pro-
perty is called sparseness [9].

In order to simplify the calculations, the LS-SVM
sacrifices this, therefore its model is often unnecessa-
rily large. In this paper a reduction method is proposed,
which enables us to achieve a sparse solution, while at
the same time the algorithmic complexity is further redu-
ced [10],[11].

3.1. LS-SVM regression

The Least Squares SVM (LS-SVM) is a modification
of Vapnik’s traditional Support Vector Machines (SVMs)
[3]. In this formulation the solution is obtained by sol-
ving a linear set of equations, instead of solving a qu-
adratic programming problem involved by standard
SVM. The main advantage of this is that algorithmic
complexity is reduced.

The solution is formed , ,
where is a mostly non-linear function,

which maps the input data into a higher – possibly infi-
nite – dimensional feature space. The data is transfor-
med into a higher dimensional space, where the solu-
tion is calculated according to the (w and b) parameters
resulting from the linear solution of the training. To mi-
nimize the generalization error, an additional constraint
– the minimization of the length of w, that is wT w – is
introduced.

The optimization problem and the inequality con-
straints are defined by the following equations (i =
1,...,N):

(2)

The C ∈ ℜ + is the trade-off parameter between a
smoother solution, and training errors. From this, a La-
grangian is formed (3):

The solution concludes in a constrained optimiza-
tion, where the conditions for optimality lead to the fol-
lowing overall solution:

(4)

where Κ(xi,xj) is the kernel function, and ΩΩ is the
kernel matrix.

The result is:

(5)

Where αk and b come from the solution of Eq. 5. It
can be seen that the achieved solution is linear but the
nonlinear mapping is replaced by a new K (.,xi) kernel
function, which is obtained as the dot product of the
ϕ(.)-s.

The training of a support vector machine is a series
of mathematical calculations, but the equation used for
determining the machine’s answer for a given input re-
presents similar calculations as those of a one hidden
layer neural network. Although in practice SVMs are rar-
ely formulated as actual networks, this neural interpreta-
tion is important, because it provides an easier discussion
framework than the purely mathematical point of view. Fi-
gure 2 illustrates the neural interpretation of an SVM.

Figure. 2. A neural network that corresponds to an SVM

The input is an M-dimensional vector. The hidden
layer implements the mapping from the input space in-
to the kernel space, where the number of hidden neu-
rons equals to the number of selected training sam-
ples, the support vectors. In this interpretation, the net-
work size of a standard SVM – because of the sparse-
ness of this solution – is determined by the number of
support vectors, which is usually much smaller than the
number of all training samples (in case of LS-SVM the
number of neurons equals to the number of training
samples N).

The response of the network (y) is the weighted
sum of the hidden neurons’ outputs, where the α i
weights are the calculated Lagrange multipliers.

3.2. LS2-SVM regression

The main goal of an LS2-SVM is to reduce model
complexity, to reduce the number of neurons in the hid-
den layer. As a side effect, the algorithmic complexity of
the required calculation is also reduced.

The starting point of the new method is Eq. 4 which
is modified by the following two steps: (i) The first step
reformulates the LS-SVM solution to use only a subset
of the training samples as “support vectors’. We also

HÍRADÁSTECHNIKA

10 VOLUME LX. • 2005/12

i

show that the resulting overdetermined system can still
be solved. (ii) In the second step an automatic “support
vector” selection method is proposed.

Using an overdetermined equation set
If the training set consists of N samples, then our

original linear equation set will have (N+1) unknowns,
the α i-s and b, (N+1) equations and (N+1)2 coefficients.
These factors are mainly the values of the K(xi,xj) i,j =
1,...,N kernel function calculated for every combination
of the training input pairs. The cardinality of the training
set therefore determines the size of the kernel matrix,
which plays a major part in the solution, as algorithmic
complexity; the complexity of the result etc. depends
on this.

Let’s take a closer look at the linear equation set
describing the regression problem. The first row means:

(6)

and the j-th row stands for the:

(7)
condition.

To reduce the equation set, columns and/or rows may
be omitted.

• If the k-th column is left out, then the corresponding
αk is also deleted, therefore the resulting model will
be smaller. The condition automatically
adapts,
since the remaining α-s will still add up to zero.

• If the j-th row is deleted, then the condition defined
by the (xj,dj) training sample is lost, because the j-
th equation is removed.
The most important component of the main matrix is

the ΩΩ+C – 1
I kernel matrix; its elements are the results of

the kernel function for pairs of training inputs (Ωi , j=
Κ(xi,xj)).To reduce the number of elements in ΩΩ, one
column, one row, or both (a column and a correspon-
ding row) may be eliminated. The rows, however, repre-
sent the constraints (input-output relations) that the so-
lution must satisfy. The following two reduction techni-
ques can be used on the regularized ΩΩ+C – 1

I matrix:
Traditional full reduction – a training sample (xk,dk)

is fully omitted, therefore both the column and the row
corresponding to this sample are eliminated. The next
equation demonstrates how the equation changes by
fully omitting some training points. The deleted ele-
ments are colored grey.

(8)

In this case, however, reduction also means that the
knowledge represented by the numerous other samples
are lost. This is exactly the case in traditional LS-SVM
pruning since pruning iteratively omits some training
points. The information embodied in these points is en-
tirely lost. To avoid this information loss, one may use
the technique referred here as partial reduction.

Proposed partial reduction – a training sample
(xj,dj) is only partially omitted, by eliminating the corre-
sponding j-th column, but keeping the j-th row. The cor-
responding input-output relation is still in effect, which
means that the weighted sum of that row should still
meet the dj (regression) goal, as closely as possible.

By selecting some (e.g. M, M < N) vectors as “sup-
port vectors”, the number of columns is reduced, resul-
ting in more equations than unknowns. The effect of
this reduction is shown in the next equation, where the
removed elements are colored grey.

(9)

As a consequence of partial reduction, our equa-
tion set becomes overdetermined, which can be solved
as a linear least-squares problem, consisting of only
(M+1)x(N+1) coefficients. Let’s simplify the notations of
our main equation as follows:

(10)

then the solution will be

(11)

The omission of columns with keeping the rows me-
ans that the network size is reduced; still all the known
constraints are taken into consideration. This is the key
concept of keeping the quality, while the equation set
is simplified.

The modified, reduced LS-SVM equation set is sol-
ved in a least squares sense, therefore we call this met-
hod Least Squares LS-SVM or shortly LS2-SVM. This
proposition resembles to the basis of the Reduced Sup-
port Vector Machines (RSVM) introduced for standard
SVM in [12]. The RSVM also selects a subset of the
samples as possible delegates to be support vectors,
but the selection method, the solution applied and the
purpose of this reduction differs from the propositions
presented. Since SVM is inherently sparse, the purpo-
se of this selection is to reduce the algorithmic comple-
xity, while our main goal is to achieve a sparse LS-SVM.

Selecting support vectors
To achieve sparseness by the above described par-

tial reduction, the linear equation set has to be redu-

Least Squares Support Vector Machines...

VOLUME LX. • 2005/12 11

ced in such a way, that the solution of this reduced
(overdetermined) problem is the closest to what the ori-
ginal solution would be.

As the matrix is formed from columns, we can select
a linearly independent subset of column vectors and
omit all others, which can be formed as linear combina-
tions of the selected ones. This can be done by finding
a “basis” (the quote indicates, that this basis is only true
under certain conditions defined later) of the coefficient
matrix, because the basis is by definition the smallest
set of vectors that can solve the problem. The linear
dependence discussed here, does not mean exact li-
near dependence, because the method uses an ad-
justable tolerance value when determining the “resem-
blance” (parallelism) of the column vectors. The use of
this tolerance value is essential, because none of the
columns of the coefficient matrix will likely be exactly
dependent (parallel).

The tolerance parameter indirectly controls the num-
ber of resulting basis vectors (M). This number does not
really depend on the number of training samples (N),
but only on the problem, since M only depends on the
number of linearly independent columns. In practice it
means that if the complexity of a problem requires M
neurons, then no matter how many training samples
are presented, the size of the resulting network does
not change.

The reduction is achieved as a part of transforming
the AT matrix into reduced row echelon form, using a
slight modification of Gauss-Jordan elimination with par-
tial pivoting [13],[14].

The algorithm uses elementary row operations:
• Interchange of two rows.
• Multiply one row by a nonzero number.
• Add a multiple of one row to

a different row.
The algorithm goes as follows:

1. Work along the main diagonal of
the matrix starting at row one,
column one (i-row index, j-column index).

2. Determine the largest element p in
column j with row index i ≥ j.

3. If p ≤ ε’ (where ε’ is the tolerance parameter)
then zero out the elements in the j-th column
with index i ≥ j ; else remember the column
index (j) because we found a basis vector
(support vector). If necessary move the row,
to have the pivot element in the diagonal
and divide the row with the pivot element p.
Subtract the right amount of this row from all
rows below this element, to make their
entries in the j-th column zero.

4. Step forward to the next diagonal element
(i = i +1, j = j +1). Go to step 2.

This method returns a list of the column vectors
which are linearly independent form the others
considering a tolerance ε’.

The problem of choosing a proper ε’ resembles
the selection of Vapnik’s SVM hyper-parameters,

like of C, ε and the kernel parameters. One possibility
is to use cross-validation. With a larger tolerance value,
we can achieve smaller networks, but consequently the
error of the estimation grows.

It is easy to see that the selection of the ε’ toleran-
ce is a trade-off problem between network size and
performance. It is also important to emphasize that by
using 0 tolerance, LS2-SVM and LS-SVM are equiva-
lent, since all of the input samples will be kept by the
described selection method.

4. Experiments

The results will be demonstrated on the most commonly
used benchmark problem in the literature of LS-SVM.
Most of the experiments where done with the sinc(x)
function in the [-10,10] domain. The kernel is Gaussian
like (RBF kernel), where σ = π. The tolerance (ε’) is set
to 0.2 and C =100.

The samples are corrupted by additive Gaussian
output noise of zero mean and standard deviation of
0.1.

First the effects of partial reduction are examined.
This is extended with the automatic selection method.
The same problem is used to compare the described
methods to the original solutions (LS-SVM and pruned
LS-SVM), but a more complex time series prediction
problem – the Mackey-Glass chaotic time series predic-
tion problem – is also described.

To compare the reduction methods first an extre-
mely simple support vector selection method is applied:
every forth input is chosen from the 40 samples (the 40
sample points are randomly selected from the domain).
Figure 3 shows the result of the partial- and the full re-
duction plotted together, along with the original – unre-
duced – LS-SVM.

Figure 3.
The different reduction methods plotted together

HÍRADÁSTECHNIKA

12 VOLUME LX. • 2005/12

It can be seen that the partial reduction gave the
same quality result as the original LS-SVM, while in this
case the complexity is reduced to its one fourth. The
fully reduced solution is only influenced by the “support
vectors”, which can be easily seen on the figure. In this
case the resulting function is burdened with much more
error.

The original unreduced LS-SVM almost exactly co-
vers the partial reductions’ dotted line (MSEpartial red.:
1.04x10-3, MSEfull red.: 6.43x10-3, MSELS-SVM: 1.44x10-3).

The “support vectors” may be selected automati-
cally, by the use of the proposed selection method. Fi-
gure 4 shows a solution that is based on the automati-
cally selected support vector set.

Figure 4.
A partially reduced LS-SVM, where the support vectors
were selected by the proposed method (ε’= 0.2)

Since 40 samples were provided, the original net-
work would have 40 nonlinear neurons, while the redu-
ced net incorporates only 9. An even more appealing
property of the proposed solution is that the cardinality
of the support vector set is indeed independent from
the number of training samples. If the problem can be
solved with N neurons in the hidden layer, then no mat-
ter how many inputs are presented, the network size
should not change.

The Table shows the number of “support vec-
tors” calculated by the algorithm for different tra-
ining set sizes of exactly the same problem (sinc(x)
with matching noise etc. parameters). The mean
square errors tested for 100 noise-free samples
are also shown. It can be seen that by increasing
the number of training samples, the error decre-
ases – as expected –, but the network size does
not change significantly.

The next figure (Figure 5) shows a solution to
the widely used Mackey-Glass time series predic-
tion problem. In the prediction we have used the
[-6,-12,-18,-24] delays, thus the x(t) value of the
t-th time instant is approximated by four past valu-
es (in Mackey-Glass process, there is no input –
the output only depends on the past values). In
this experiment the training is done by using 500
training samples.

This experiment shows that the above/descri-
bed solution along with LS-SVM regression is appli-
cable to solve time series prediction problems.

5. Summary

In this paper, the possibilities of data mining applica-
tions of LS-SVMs are investigated. We have shown the
original formulation of LS-SVM and proposed some

Least Squares Support Vector Machines...

VOLUME LX. • 2005/12 13

Table:
The number of

support vectors,
and the mean squared error

calculated for
d i fferent training set sizes
of the same problem using

the proposed methods
(the tolerance was

set to 0.25)

Figure 5.
An LS-SVM approximation of the Mackey-Glass time

series predict ion problem

modifications to extend it, in order to achieve a small,
sparse model, even in the case of large datasets. This
paper also shows a simple method to solve a time se-
ries prediction problem through simple static regres-
sion, which can be solved by analytic methods, or by
the neural model (e. g. the described LS-SVM).

The described methods can be used for a wide
range of problems; therefore they provide an efficient
tool for a large number of research or real-life problems.

References

[1] Horváth G. (ed.),
“Neural Networks and their Applications”,
Mûegyetem kiadó, Budapest, 1998. (in Hungarian)

[2] S. Haykin,
“Neural networks. A comprehensive foundation”,
Prentice Hall, N. J., 1999.

[3] V. Vapnik,
“The Nature of Statistical Learning Theory”,
New York: Springer Verlag, 1995.

[4] E. Osuna, R. Freund, F. Girosi,
“Support vector machines: Training and applications”,
Technical Report AIM-1602, MIT A.I. Lab., 1996.

[5] C. J. C. Burges, B. Schölkopf,
“Improving the accuracy and speed of
support vector learning machines”,
In: M. Mozer, M. Jordan, T. Petsche (ed.),
Advances in Neural Information Processing Systems 9,
pp.375–381., Cambridge, MA, MIT Press, 1997.

[6] E. Osuna, R. Freund, F. Girosi,
“An improved training algorithm
for support vector machines”
In: J. Principe, L. Gile, N. Morgan, E. Wilson (ed.),

Neural Networks for Signal Processing VII –
Proceedings of the 1997 IEEE Workshop,
pp.276–285, New York, 1997.

[7] Thorsten Joachims,
“Making Large-Scale SVM Learning Practical”,
Advances in Kernel Methods-Support Vector Learning’,
MIT Press, Cambridge, USA, 1998.

[8] J.A.K. Suykens, T. Van Gestel, J. De Brabanter,
B. De Moor, J. Vandewalle,
“Least Squares Support Vector Machines”, 2002.
World Scientific, Singapore, (ISBN 981-238-151-1)

[9] F. Girosi,
“An equivalence between sparse approximation and
support vector machines,”
Neural Computation, 10(6), pp.1455–1480., 1998.

[10] J. Valyon, G. Horváth,
“A generalized LS-SVM”,
SYSID’2003 Rotterdam, 2003, pp.827–832.

[11] J. Valyon, G. Horváth,
“A Sparse Least Squares
Support Vector Machine Classifier”,
Proceedings of the International Joint Conference
on Neural Networks IJCNN 2004, pp.543–548.

[12] Yuh-Jye Lee, Olvi L. Mangasarian,
“RSVM: Reduced support vector machines”,
Proc. of the First SIAM International Conference on
Data Mining, Chicago, April 5-7, 2001.

[13] W. H. Press, S. A. Teukolsky, W. T. Wetterling,
B. P. Flannery,
“Numerical Recipes in C”, Cambridge University Press,
Books On-Line, www.nr.com, 2002.

[14] G. H. Golub, Charles F. Van Loan,
“Matrix Computations”,
Gene Johns Hopkins University Press, 1989.

HÍRADÁSTECHNIKA

14 VOLUME LX. • 2005/12

