
1. Introduction

Class based weighted fair queueing is a service policy
in multi-class systems. Consider a service station that
provides its resources for customers belonging to diffe-
rent classes. The customers inside a class are waiting
in an FCFS manner for their service. There are weights
assigned to each class. The ratio of server capacity
available for a class is given by the ratio of weights of
the classes that are “active” (there are customers wait-
ing in the queue belonging to that class). So the “im-
portance” of the customers is regulated by the weight
assigned to their class. 

If the customer arrivals are according to Poisson
processes, and service times are exponentially distribu-
ted, the system can be modeled by a “two dimensional”
Markov chain.

There were many methods proposed to give the so-
lution of this Markov chain. First we list numerical solu-
tions. In [1],[2] the authors consider the same problem,
but they call this kind of system Coupled Processor Mo-
del. They express the steady state probabilities of the
two dimensional Markov chain as a power series of the
load, and give a recursive way to compute the coeffi-
cients of the powers. With that approach only a few
number of classes can be handled (2-3), and as the load
tends to 1 a large number of coefficients have to be com-
puted to reach a given accuracy. 

An other approach ([3]) approximates the infinite
model with a finite one, and uses a kind of Gaussian
elimination to solve the finite Markov chain. During the
Gaussian elimination the structure of the system is ex-
ploited, and reasonable speedup is achieved. But
again, if the load is high, the reduced finite Markov chain
has too many states and speed decreases fast.

In [4] the authors provide the generating function of
the two dimensional Markov chain. The result is a two-
variable complex (actually analytical) function, where
the problem is to determine the one dimensional boun-

dary generating functions. This gives the difficulty of
this approach, since it needs Wiener-Hopf factorization. 

In this paper we consider a two-class system, how-
ever the approach itself can be extended to more clas-
ses as well. Contrary to the solutions mentioned above,
the arrival intervals and service times are given with two
moments. Using this input two moments of the waiting
time are approximated.

2. Concept of the Approximation

The concept is to approximate the 2-queue system as
if the queues were separated, and construct a service
process for each that approximately imitates the beha-
viour of the original server (see Figure 1).

Figure 1.Separation of the customer classes

For example looking at queue 1 the server capacity
is changing between the full capacity (C) and decre-
ased capacity (according to the ratio of weights) de-
pending on whether queue 2 is idle or busy. So the
idea is simple: let’s characterize the busy period process
of queue 2, and construct a modulated server process
for queue 1 where the modulation of the server is given
by the busy period process of queue 2 (see Figure 2).

As soon as the servers are separated, the queues
are modeled by quasi birth-death processes (QBDs),
and solved using matrix geometric techniques. In the
Markov chain that models a queue the states are dup-
licated, corresponding to the idle or busy state of the
other queue. In one state the customers can use the
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full server capacity, in the other they receive reduced
service rate according to weights. Figure 3 shows the
macro-structure of the Markov chain.

Figure 2. The modulation in the service process

Figure 3. Structure of the approximating Markov chain

Before going into technical details, we summarize the
steps of the algorithm to help understanding its structure.

• Construct PH representation of the arrival and ser-
vice processes. The PH representation enables
the use of matrix geometric methods. 

• Compute the length of the busy periods. This step
will produce the parameters of 4 PH random varia-
bles, since the computation detailed in that sec-
tion has to be performed for queue 1 and queue
2, beside full capacity service and beside reduced
capacity service.

• Construct the QBD that models queue 1 (depicted
by Figure 3) and compute the waiting time para-
meters. Do the same for queue 2.

A. Arrival and Service
There are two classes. Measures and notations as-

sociated to class i are denoted by superscript (i). The
arrival process is characterized by the arrival intensity
λ(i) and the squared coefficient of variation of the inter
-arrival times c 2

A
(i). Based on these two moments a se-

cond order acyclic phase type distribution (APH, [6]) is
constructed having the same moments. This PH ran-
dom variable is described by its transient generator
matrix D(i), the vector of absorbing transitions d(i), and
initial probability vector δ(i). It is easy to check that the
following PH random variable has the proper moments:

The length of the job brought by the customers is
characterized by its mean ml

(i) and squared coefficient
of variation cl

(i). Instead of these measures we compu-
te and use the service rate and its squared coefficient
of variation of the queues, assuming full capacity (other
queue is idle):

and assuming reduced capacity (other queue is
busy):

where C denotes the server capacity and wi deno-
tes the weight assigned to class i.

Again, as above, a PH distribution is constructed
from these parameters: 

For the reduced capacity case (Sr
(i), sr

(i), σr
(i)) are

constructed similarly.

B. Busy Period
Let us look at Figure 3 again. The transitions rela-

ted to arrivals and services are already described, by
PH distributions (see the last section). What is still mis-
sing is the busy period computation. We will compute
two moments of the busy period of the queues as if
they were isolated (without the impact of the presence
of the other queue), beside full and reduced server ca-
pacity. 

We have PH arrival and service process, so the Mar-
kov chain model of the queues in isolation has a spe-
cial block-tri-diagonal, a so-called QBD structure:

The blocks of the generator of queue i with full ser-
ver capacity are the following (see [6]):
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The blocks assuming reduced capacity are obtai-
ned similarly. To compute the kth moment of the busy
period (        ) generated by an arrival the following equ-
ation has to be solved:

where          satisfies the following matrix equation:

The 0th derivative of          at s=0 leads to the fun-
damental matrix geometric equation (for matrix G), see
for example [6]. For the first derivative we have the fol-
lowing implicit equation:

which we solved by a fix point iteration.
In our approximation only two moments are utilized,

they are the following (from the definition, after some
algebra):

Having these two moments the same PH fitting is
performed like before, with the parameters of the obtai-
ned PH distribution denoted by Bƒ

(i), bƒ
(i), βƒ

(i).
To build up the Markov chain of Figure 3, we will al-

so need the phase probability vector of the arrival pro-
cess at the moment when the busy period finishes.
This is computed as:

C. Queue Model
Now, we construct the block matrices of the QBD

modeling queue i (its structure is depicted in Figure 3).
The index of the other queue will be denoted by j (thus,
if i=1 then j=2 and vice versa). As seen in Figure 3, the
state space is divided into two parts. 

In the upper part, where the other queue is idle,
queue i receives full service capacity. In this part of the
state space, one has to keep track (1) the phase of the
arrival process of queue i, (2) the phase of service pro-

cess of queue i, and (3) the phase of arrival process of
queue j.

When a class j customer appears, the capacity of
the server is shared between the two classes according
to the weights. Thus, the arrival of a class j customer
drives the Markov chain to the lower part. In this part
phases (1) and (2) have to be kept track too, but the
phase of the busy period of queue j has to be kept
track instead of the phase of its arrival process. This
behavior is reflected in the definition of the block matri-
ces of the QBD:

The irregular matrices at level 0 are the following: 

The number of phases is 16, so the classical QBD
solver algorithms can provide the steady state probabi-
lities and waiting times quickly (see [6]).

3. Numerical Results

Below, we evaluate two examples to demonstrate the
algorithm. In case 1 the moments of the job size of the
two classes are similar and in the second case, the job
size of customers of class 2 is 10 times longer.

The plots contain the results of both the analysis
and discrete event simulation to allow the evaluation of
the accuracy of the presented approximation.

Example 1.
On the first pair of plots the waiting time moments

are depicted as a function of the load of class 1 (Figu-
re 4 and 5). As it is expected we obtained that the me-
an waiting time increases while its squared coefficient
of variation decreases with increasing load.

The second scenario investigates the influence of
job size variance. In the next two plots the squared co-
efficient of variation of the inter arrival and service times
are changed, and again two moments of the waiting ti-
mes are captured (Figures 6, 7, 8 and 9). According to
the results (both simulation and analysis) the incre-
asing variance does only have a very small impact on
the waiting time of the other queue.
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Figure 8.  Mean waiting time vs. the squared coeff ic ient
of variation of the class 1 inter-arrival t ime

Finally, the waiting time is depicted as a function of
the weight (Figures 10 and 11). Weight 0 means that
the other queue has preemptive priority over the corre-
sponding one. The results reflect this behavior.

Example 2.
In this case the mean job size of class 2 customers

is 10 times larger. The first figure (Figure 12) shows the

waiting time as a function of the load. Even when the
‘large job’ (class 2) queue is overloaded, customers in
class 1 get their guaranteed service, as it is indicated
by its low waiting time. 

Figures 14, 15, 16 and 17 show the effect of the va-
riance on the waiting time. The simulation results show
again that the waiting time of queue 2 does not get
worse when increasing the variance of the inter arrival
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Figure 4.  Mean wait ing t ime vs. class 1 arrival rate

Figure 6.  Mean waiting time vs. the squared coefficient of
variation of the class 1 service time

Figure 5.  Squared coefficient of variation of 
the wait ing t ime vs. class 1 arrival rate

Figure 7.  Squared coefficient of variation of the waiting
time vs. the squared coefficient of variation of
the class 1 service t ime

Figure 9.  Squared coefficient of variation of the waiting
time vs. the squared coefficient of variation of
the class 1 inter-arrival t ime



or the service time of queue 1. The analysis shows a
little correlation, but the difference from simulation re-
mains reasonable.

In Figures 18 and 19, the weight of class 1 is chan-
ged. This case provides the worst approximation. We
obtain reasonable differences with respect to the mean
waiting time, but the squared coefficient of variation dif-
ference grows to 20%.

4. Conclusion

In this paper we presented an approximate performan-
ce analysis method for the two class weighted fair qu-
eueing system. 

After the simplification of the structure of the Markov
chain, we solved the upcoming queueing problem by
matrix geometric methods. The advantage of our me-
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Figure 10.  Mean waiting time vs. the weight of class 1

Figure 12.  Mean waiting time vs. class 2 arrival rate

Figure 11.  Squared coefficient of variation of the waiting
time vs. the weight of class 1

Figure 13.  Squared coefficient of variation of the waiting
time vs. class 1 arr ival rate

Figure 15.  Squared coefficient of variation of the waiting
time vs. the squared coefficient of variation
of the class 1 inter-arrival t ime

Figure 14.  Mean waiting time vs. the squared coeff ic ient
of variation of the class 1 inter-arrival t ime



thod is that its computation complexity is very low; and
it is more general than most of the methods published
so far since it also takes the variance of the arrival and
service times in consideration.

We evaluated two numerical examples to examine
the accuracy of the approximation exhaustively. In most
of the cases the results were very close to the ones ob-
tained by simulation. 

The largest gap (15-20%) was experienced in the
squared coefficient of variation of the waiting time, how-
ever we got reasonably good approximation for the
mean waiting time in all of the cases.
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Figure 16.  Mean waiting time vs. the squared coeff ic ient
of variation of the class 1 service t ime

Figure 17.  Squared coefficient of variation of the waiting
time vs. the squared coefficient of variation of
the class 1 service t ime

Figure 18.  Mean waiting time 
vs. the weight of class 1

Figure 19.  Squared coefficient of variation of
the waiting time vs. the weight of class 1


