On-board autonomy of lander units
for comet nucleus exploration

ATTILA BAKSA

KFKI RMKI
baksa@rmki.kfki.hu

Keywords: space research, spacecraft, lander, computer, software, autonomy, high reliability

Keeping lander units functional in the hostile, energy-lacking environment in the outskirts of our Solar system is a great chal-
lenge. An autonomous real-time control system of a lander is expected to response on board to both nominal and non-nomi-
nal events without any external intervention. Recent developments in microelectronics make it possible to use such space-
qualified microprocessors that allow the development of highly autonomous on-board software systems. But the increased
computing power itself is not all - equally advanced software methods are also needed to provide real autonomy. Considering
the complexity of a number of mutually interacting tasks, it is necessary to model them by well-described abstract logical
modules. Our focus was on managing the static and dynamic behaviour of the system separately and eventually we devel-
oped the Mission Sequencing Object Model Language for describing the long-term autonomous mission control mechanism.
This model was implemented on the Philae Lander for the Rosetta mission of the European Space Agency, which was suc-

cessfully launched on 2 March 2004.

Many space missions are nowadays under preparation,
which use the most advanced space technology to
explore the unknown depths of our Solar system. The
most recently developed microelectronic devices, such
as low power consumption high-speed microproces-
sors, FPGAs, high efficiency solar cell modules and
high storage density batteries open the way to keep
functional even in hostile, energy lacking environment
in the outskirts of our Solar system.

Problems

Operating so far from the Earth poses not only the prob-
lem of the rocket engines capable to get there but also
causes a long dead time in the remote controlled oper-
ations issued from the Earth. While in the distance of
Mars the radio systems signal propagation delay is just
20 minutes then, for example in the distance of Jupiter
the control loop delay can take several hours. In the
cold of the outer solar system there comes an addition-
al problem: it is necessary to heat all the electrical
equipment to keep them functional, but we have very
low energy budget. We can, however, use radioactive
energy source, which is not recommended for ecologi-

cal reasons.
Fig.1. {
Rosetta lander AJ'.
(Philae) a

o

It can easily happen that we have to acquire solar
energy for days but this energy will be enough just for a
few ours of scientific activity. It is clear that a spacecraft
far from the sun shouldn’t waste its energy and time by
waiting for control signals from the Mission Control
Centre on the Earth. Direct control is potentially dange-

34

rous because the energy balance of the whole space-
craft may collapse in case of an unexpected problem,
due to a time-consuming command exchange.

The solution

The only solution for these situations is to increase the
rate of on-board autonomy. We have to rely on a built-
in intelligent, adaptive control system, which provides
the following functions:
» Managing the scientific operations continuously
without any interactions with the Control Centre
» Adaptation to the non-predictable timing
requirements during the scientific operations
* Giving real-time autonomous reaction to
the nominal and non-nominal external events
» Handling emergency situations
« Taking care of the energy balance
+ Capability to store the measured scientific data,
even in case of energy loss
Having a control system without these capabilities
can easily lead to a failed mission. The earlier surface
modules had insufficient computing power for long term
autonomous missions. In the past in most cases it was
unfeasible to plan missions not requiring the Earth
intervention for more than a few days. Recent devel-
opments in the field of microelectronics make it possi-
ble to use such space-qualified microprocessors, which
allows creation of on-board software systems having
high rate of autonomy. Although these processors still
do not provide enough computing power to employ real
Artificial Intelligence but a good design model makes it
possible to create a real-time autonomous system
which can handle all the tasks of a lander unit even in
long-term missions.

LIX. VOLUME 2004/12

On-board autonomy of lander units...

Considerations

The extent of fault-tolerance of the software system is
especially important when forming autonomous strate-
gy of the on-board software. In the design of the soft-
ware model we have to take the following policies:

* For the sake of the safe operation the measured
environment values must be verified according
to limits of values, trends, etc. It is equally important
to verify the software variables before they are
used as actuator signals.

+ The internal control model has to be sensible also
for the anomalies of its environment.

» There has to be state transitions for every events.
This condition was hard to achieve In the case of
high number of potential events or bad predictability
of the complete event set in the traditional models.
What is innovative about our conceptual model
is that it provides solution to reconfigure the state
transition definitions even during live operation.

» We have to apply timeouts in management of
every states.

* In order to keep the reaction time low we have
to minimise the execution time in critical or
non-interruptible states.

 To minimise the danger of crash or malfunction of
the system the received telecommands have to be
fully decoded, checked and verified.

» The model can not have logical path causing
system deadlock

The task

We’ve studied in details the requirements for a probe or
rover, which should operate on the surface of a planet,
asteroid or a comet. We divided all the requirements
into the following topics:
« Controlling the Lander unit during approach,
descent, landing and surface operations
» Keeping the Power and Thermal balance of
the lander unit
* Management and execution of
the scientific program
+ Collecting and storing the experimental data
acquired by the payload and service subsystems
» Management of telecommunication functions
(Radio link management, telecommand reception
and telemetry transmission)
* Providing fault tolerance by handling
the built-in hardware redundancy
Examining each aforementioned items we came to
the conclusion that all of them interact to the others. So
an appropriate central logic should provide interaction
between them. In implementation, however, it can lead
to a very complex control algorithm that is very hard to
implement software. To fulfil all the mentioned require-
ments in a manageable way it is necessary to construct
an abstract architectural model which is rather flexible,
but as simple as possible.

LIX. VOLUME 2004/12

The model in general

Our central idea is to separate the static and the dyna-
mic behaviour of the system. This modelling approach
has many advantages opposite to the concept of the
software design of earlier surface modules. This method
minimises the required data traffic between the lander
and the Mission Control Centre because the various com-
bination of the static and dynamic algorithm reduces the
required telecommands for the control. It is an essential
point because the upload speed of the telecommands
through the communication link is 10-200 bits/second at
most from the Earth and the communication session
length is usually limited to 10-20 minutes because of
the high signal-to-noise ratio. We continuously kept in
mind to provide the possibility to easily reconfigure the
whole central logic during any mission phase in the life-
time of a lander. So we broke down both our models
into a set of individual basic parts. A single part is called
Mission Sequencing Object (MSO). The size of an MSO
is varying to fit into the telecommand packet. The link
between the MSO items make it possible to design
them independently which gives us an understandable,
easy-to-use man-machine interface for the Mission Cont-
rol Team. Using this modelling language makes it possi-
ble to translate the Mission Control Information to a data
format, which is uplinkable to the on-board Central
Control Computer via Telecommands.

It is also possible to attach MSOs to the Mission
Control Information Database of the Knowledge Mana-
gement System. Additionally we designed an advan-
ced storage and retrieval algorithm for the on-board
control software for storing MSOs to and retrieving them
from the on-board memory. This algorithm has depend-
able but space saving data storage capability and a
very short seek-time for accessing further MSO items.

Fig.2. Mission sequencing objects generation and usage
on Rosetta lander (Philae)

Lander

o 7
Pt) T Comet
Satellite dish Orbiter
MSO0 quel MSO execution
generation
Environment M Scientific
model fitting sequence
o " Day & Night
Mission planning operation
L L1 ____seguence |
Scientific Data storage
planning allocation
Power & Thermal
distribution
Scientific data Scientific data
eveluation acquisition

35

HiRADASTECHNIKA

The static model

The main task of the static model is to generate the
actual operational state of the system. The basic MSO
of the static model is the SMSO (Static Mission Se-
quencing Object). An SMSO is responsible for the fol-
lowing system attributes:
» Parameters of the current operation mode
— Operation speed
— Rate of failure tolerance
— Rate of energy saving
+ Current set-up of the scientific payload instruments
» Parameters of the data collection for
scientific instruments
« Data transfer quotas for the optimised distribution
of data storage capability
* Protection for the critical operation phases
+ Set up priority order for the currently operating
experiments from the following point of views:
— Energy distribution
— Data collection and storage
— Service speed

 Time tagging and time-out mechanisms
+ Link and connection definitions to other DMSO items.
Possible connection types are the following:
— chain like, call like and jump like

The implementation

This model is implemented for the ESA (European Space
Agency) cometary mission called Rosetta. The on-board
central computer (Command and Data Management
Subsystem) of the Philae Lander in the Rosetta mis-
sion is equipped with this technique.

The scientific mission of the Lander has not defined
yet because there are a lot of uncertainties concerning
the attributes of the target object. Using this controlling
technique made that possible to finish the on-board
software development without detailed information
about the scientific program of the mission. The final
scientific program will be translated into MSO items and
will be uplinked to the Lander via telecommands, just
before starting the descent to the comet surface in
2014. Rosetta was successfully launched on 2 March
2004 and its is now on its decade long way

 \ e N\
MSO System
MSOL Items
(7]
Y
=]
T
o
E
=
CL) \. J
o
°
2 (A
a TT Operations
RTT ltems ATT ltems
—/ \\ J

— to comet 67P/Churyumov-Gerasimenko.

We hope our model will help Philae to
accomplish its landing and operating on an
ice mountain bouncing around its three axis.
In case of success this event may open a
new chapter in the history of the Solar system
exploration.

The software environment

The on-board software of the central comput-
er of the Philae Lander consists of a real-time
operating system and 8 application tasks. All
these software modules are specially devel-
oped by our team for the Harris RTX2010RH
microprocessor. The co-ordination of the sci-
entific program and the overall control of the
algorithms used by the application tasks are
— done by the MSO modelling language.

Actuator SW modules

Fig. 3. Structure of the Mission Sequencing Object Model

The dynamic model

The dynamic model describes the required reactions to
nominal and non-nominal events and defines the state
changes in the static model. The basic MSO of the dy-
namic model is the DMSO (Dynamic Mission Sequenc-
ing Object). A DMSO is responsible for the following
system attributes:

+ Reference to the current SMSO item

* Nominal and non-nominal events definition

* Reactions to nominal and non-nominal events,

which are categorised as follows
— control-, failure prevention-, failure handler-,
recovery- and safe mode-algorithm

36

References

[1] Ron S. Kenett, Emanuel R. Baker:
Software Process Quality ,
1999 New-York

[2] Savio Chau, Abhijit Sengupta,
Tuan Tran, Ali Backhshi:
Ultra Long-life Spacecraft for
Long Duration Space Exploration Missions
Space Technology Vol. 23, 2003

[3] David P. Youll:
Making Software Development Visible,
1990, Chichester

LIX. VOLUME 2004/12

