
Although modern pitch perception models state that the
subjective pitch of a sound is not always one to one
relation with its fundamental frequency (F0), in speech
signal processing F0 estimators are commonly known
as pitch detection algorithms or PDA, pitch and F0 are
treated often as synonyms. A reliably estimated pitch
contour of a speech waveform can be useful for a wide
range of application. Speech F0 variations plays impor-
tant role in prosody analysis such as discriminating
statements and questions. Automatic speech recog-
nition in tonal languages such as mandarin Chinese or
Vietnamese also needs a good pitch detector.

Many pitch determination methods have been pro-
posed [10] in the literature and the most comprehensive
review is that of Hess [7]. Most of them are moderate in
performance but there are some outstanding. For
example Bagshaw’s eSRPD method [3,4] estimates F0
with less than 1% gross frequency error where voiced
excitation exists in speech. But it detects the presence
or absence of a voiced excitation with 3-4% error.

It is common in speech sciences that linguistically
meaningful pitch can exist only where voicing exists.
Hence the solution of voicing problem is a premise for
the solution of the pitch determination problem.
Voiced/unvoiced (V/UV) distinction is a must for speech
recognition, since there are words differing from each
other only in a voiced or unvoiced consonant, for ex-
ample ‘too’ and ‘do’.

Voicing determination algorithms (VDA) can be real-
ized implicitly as a part of the PDA but also as a stand-
ing alone application. Several VDA has been proposed
in the literature [7,12], some of them deserve attention
unsparing theoretical invention and but mostly with not
a persuasive performance. The rate of V/UV errors is
usually higher than the F0 estimation error rates in
PDAs. Atal and Rabiner presented a multi-parameter
solution based on pattern recognition approach [5,6,7].
It gives 4% decision error but it solves a stronger task
namely the voiced/unvoiced/silent (V/U/S) classification
instead of voiced/unvoiced (V/UV) decision.

The present paper introduces an enhanced method
for voicing detection built in a PDA. Our algorithm is
based on the well-known Autocorrelation Function
(ACF). Using our VDA the decision error falls nearly to
2%. Using Fast Fourier Transform to compute ACF our
algorithms can be implemented with less than 2 mega-
flop per second computational cost assuming 8 kHz as
sampling frequency.

Next sections of this paper follow the modular struc-
ture of the algorithm. Section 2 describes our unique
preprocessor. It was designed above all to help V/UV
distinction, and it plays an important role in achieving
the error rate mentioned. After preprocessing typically
30-50 ms long windows of speech are sent to the basic
extractor, which is described in section 3. This part com-
putes the ACF and extracts parameters for V/UV deci-
sion and F0 estimation from it. We use there a special
trick namely the “skeletonization” to reduce ‘F0 on the
upper limit’ type estimation errors.

Our very simple but efficient built-in VDA is in section
4. V/UV decision is based on two parameters, they are
compared with thresholds. This two threshold method is
essential attaching that good decision error rate. In the
literature generally PDAs involve postprocessor which
smoothes pitch contours. We do not apply postproces-
sor now, because this paper focuses only to the relia-
bility of the voicing determination.

1. Preprocessing of speech signal

The usual realization of a PDA is subdivided into three
main building blocks: 1) preprocessor, 2) basic extractor,
and 3) postprocessor. The main task of the preproces-
sor is increasing the ease of pitch extraction or voicing
determination.

The basic extractor normally works on 20-50 ms long
windows of the speech signal. But distinguishing
between the steps of preprocessing and basic extraction
has just formal importance very often. When windowing
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step precedes the preprocessor in the execution order
of the algorithm we can not examine their work really
separately and a lot of computations are duplicated if
the windows are overlapped. Windowing before prepro-
cessing makes impossible to listen by ear the output of
the preprocessor connectedly. In contrast with that we
suggest running the preprocessor on the complete
speech signal, after then taking out windows form the
output signal and sending them to the basic extractor. In
this case we can make sensible an inner state of the
algorithm. Creating sensual checkpoints inside a compli-
cated speech processing system can help to optimize its
parameters empirically. Our preprocessor is partly “opti-
mized” by ear: fine tuning it we adjusted some parame-
ters until we felt that the output sounds good.

In our preprocessor we use low-pass filter and cen-
ter clipping. Those are both common in the literature of
PDAs [6,9,11]. The characteristics of low-pass filter (Che-
bishev I type) and center clip used in our method are
shown in Fig. 1.

The technique of adaptive center clipping applies
time-varying clipping level which is adjusted according
to the signal amplitude. Generally the varying clipping
level is a fixed percentage of an envelope of the
speech signal computed some way. The original inno-
vation in our method that it combines the two step: the
amplitude envelope is computed from the original
speech signal and the low-pass filtered signal is center-
clipped with 40% of the envelope. This method re-
moves almost everywhere the speech segments with
clearly stochastic excitation such as voiceless conso-
nants. The output signal becomes zero where the low
frequency component of the input signal represents
the rate of total energy not high enough.

Fig. 2, 3 and 4 show the work of our preprocessor. 

Fig. 2.  
The original speech with its envelope and 

the low-pass fi l tered signal.

Fig. 3.  
Low-pass fi l tered speech and 

the computed center cl ip level.

Fig. 4. 
Speech signal before and after preprocessing.
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Fig. 1.  Characteristics of low-pass fi l ter and center cl ip applied in preprocessor

Hz

Fig. 4.

Fig. 2.

Fig. 3.



2. Basic parameter extraction

This part of our PDA computes the Autocorrelation
Function of the actual signal window and then the
algorithm searches for the “best” local maximum of the
ACF. The value of the selected peak serves as the
main voicing decision parameter and its time lag is the
estimation of the fundamental period. But how could
we find the “best” peak? As you can see below, the
“best” maximum is not so far definitely the global one.

First of all note that all in our formulas the time relat-
ed symbols (τ, t, u, W) are meant in seconds and sig-
nals are meant continuous in time and amplitude hence
we use integrals instead of sums. Signal amplitude is
meant as the rate of maximal amplitude that can be
processed in the system, so that –1.0 ≤ x(t) ≤ 1.0. These
notations make our discussion independent of sampling
frequency and bit-rate. Our integral type formulas can
easily be converted to sums for concrete applications
when sampling frequency and bit-rate are known.

Instead of the biased definition of ACF, which is
common in signal processing, we use the unbiased de-
finition, and we apply artificial biasing on it. (W denotes
the window length; we set it to 32 ms for this investiga-
tion.)

(τ, t, u, W in sec) (1)

and the artificial biasing (its degree can be tuned
through the gr coefficient):

rt 
biased (τ) = rt  (τ) ⋅ (1–gr ⋅ τ) (2)

Computing ACF on the biased way it shows shrink-
ing with increasing values of τ, which gives gain for the
fundamental period against its multiples. Although this
shrinking can be useful and attractive, its rate can only
be tuned by adjusting W. De Cheveigné suggests [5]
computing ACF on the unbiased way using fixed win-
dow length for all τ time lags and after then applying
artificial bias on it. That enables us to adjust the rate of
shrinking and window length independently.

For the onset part of a low frequency voice the ma-
ximum of the ACF frequently occur at the limit of the
searching range. This phenomenon causes the “F0 on
the upper limit” type errors. That can be seen in Fig. 5.

To avoid this sort of error we suggest using the
skeleton function or “fishbone” method in other words.
The skeleton of a function takes the values of the orig-
inal function at its local maxima or minima and takes
zero otherwise. For our purposes the most suitable def-
inition of local extreme is an intermediate level one
between the strict and non-strict version. Fig. 6. shows
how we do mean local extreme.

Definition:  ƒ:R→R real function has local extreme at x,
if ƒ not stricly monoton and not plain at x.

Definition:  g = skeleton(ƒ)  if and only if

ƒ(x)  if  ƒ has local extreme at xg(x) = (3)0  otherwise

Despite the artificial bias, for the release part of a
clear voiced sound ACF tends to have higher peaks
with increasing time lags as it can be seen in Fig. 7.

This symptom occurs only if the ACF is almost one
or even greater than one at the fundamental period.
We suggest applying a so called preference level to
avoid this problem. Then our algorithm picks the first
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Fig. 5.  Onset part of a low frequency tone (67 Hz) and its autocorrelation. 
The value of ACF at the fundamental period is lower than at the limit of the searching range.

Fig. 6.  
Skeleton function takes 0 where its original is plain.



peak that exceeds the preference level. If there is no
peak exceeds the preference level the highest peak is
chosen. We used 0.75 as preference level chosen it
empirically.

Summarizing our basic parameter extractor now we
list the algorithm’s steps in the correct order:

Step 1: Compute unbiased ACF as in Eq (1).
Step 2: Skeletonization: srt (τ) = skeleton(rt (τ)).
Step 3: Constrain the F0 searching range:

Let [F0min;F0max] the searching interval,

(4)

Step 4: Bias the skeleton:
srlt

biased(τ) = (1–gr ⋅τ)⋅ srlt (τ)     with gr =1.75  (5)
Step 5: F0 estimation:

Step 5/A: Applying the preference level:
τ ∗ = min{τ : srlt

biased(τ) ≥ 0.75} (6)
Step 5/B:
If 5/A did not succeed choose the highest peak:

τ ∗ = arg max{srlt
biased(τ)} (7)

and the estimated fundamental frequency:
F0* = 1 ⁄τ ∗ . (8)

Step 6: Get voicing decision parameter:
rmt = srlt (τ∗ )  from the unbiased skeleton (9)

Fig. 8. shows an example for the algorithms work.

3. Voiced-unvoiced decision

Our VDA uses rmt (9) as decision parameter and the lo-
garithm of the signal energy on the analyzed window:

(dB)  (10)

Consequently from the definition: 
pt =0 dB for a full-scaled square wave.

Parameters are compared with threshold so the voi-
cing indicator function is:

voicing(t) =
1  if  (rmt > rmth)&(pt > pth)
0  otherwise

(11)

Where pth and rmth are the thresholds.
And now the only question is where to put these

thresholds. Tuning procedure of thresholds is linked
with the evaluation of voicing decision error rate. We
divided the evaluation speech database into 2 parts:
1st half is the teaching set and 2nd half is the control
set. The teaching set is for optimizing thresholds on it
and the control set is for evaluating our VDA with the
optimized thresholds. This evaluation method is correct
only if the control set is disjoint from the teaching set.
Partitioning both male and female speech into the
teaching and control sets provides the maximum spea-
ker independency of the optimization.

Speech F0 estimation...
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Fig. 7.  Release part of a voiced sound and its autocorrelation.

Fig. 8.  The global maximum of srl(?) shows the fundamental period of the speech window.
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Voicing decision parameters were extracted using
W= 32 ms window length and F0 searching range was
between 55 and 480 Hz. Fig. 9/a. shows their distrib-
ution on the teaching set. Light points come from the
voiced segments and dark points come from voiceless
segments. The two perpendicular lines depict the two
threshold classification method. As it can be seen they
do not separate the voiced and voiceless sets per-
fectly.

Expected Error Surface can be derived from the dis-
tribution as a function of threshold pairs. The value of
the surface at (x,y) represents the voicing decision error
on the teaching set itself choosing (x,y) as thresholds.
Minima of surfaces represent the optimal threshold.
Fig. 9/b. shows the surface.     

Optimized thresholds are: pth = –55.2 dB and rmth
= 0.23. The value of error surface at that point is 1.95%.
Applying these thresholds on the control set the error
rate is 2.13%. This error rate is the tested performance
of our algorithm.

4. Summary

Surveying our algorithms we think that three original
trick help us to achieve the 2.13% error rate. First is the
combination of low-pass filter and center clip in pre-
processor, the second is using skeleton in the basic
extractor and the third is considering signal energy in
voicing determination. The signal energy indicates voic-
ing much more significantly after preprocessing than
before. Precise formulation and correct execution order
are also essential.     

5. Evaluation database

Our algorithms were tested on the Fundamental Fre-
quency Determination Algorithm (FDA) Evaluation Da-
tabase recorded at University of Edinburgh, Centre for
Speech Technology Research and authored by Paul
Bagshaw. 

This database is available via ftp from the URL:
http://www.cstr.ed.ac.uk/˜pcb/fda-eval.tar.gz 

It contains 0.12 h speech, 50 English sentences
each spoken by one male and one female speakers.
37% out of the total time are voiced segments and
63% are voiceless (silent and unvoiced consonants
together). Synchronously with speech signal laryngo-
graph signal was also recorded, which was the basis of
labeling voiced and unvoiced segments.
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At Supercomm, ECI Telecom will display the latest enhancements to ist XDM platform that make it the
first multi-service provisioning platform (MSPP) to fully integrate CWDM and DWDM. Fully integrating
CWDM, LDWDM, Ethernet and SONET onto the same platform provides carriers and service providers
with a solution that seamlessly connects and manages an optical network from the metro edge to the
regional core with simplified operations, reduced costs and ent-to-end performance monitoring. The
XDM converged platform with end-to-end multi-layer management allows for seamless traffic connectiv-
ity from subtending CWDM or SONET edge rings to metro core DWDM rings with performance monitor-
ing for all services. Additionally, the XDM Build as you Grow architecture enables more freedom to
choose the right technology for each service and application.

Veraz Networks will demonstrate on-the-fly services creation, customization, and services management
for providers and their customers. The demonstration will highlight the ability to actually create, cus-
tomize, deploy, and provision services ll without the need for new software releases. This on-the-fly
automation reduces the time traditionally required to take services from concept to revenue generation
from months or years to hours. The demonstration will introduce Veraz´s built-in service management
capabilities. It will demonstrate how providers can create services, group services into service bundles,
provision and update service bundles. The service bundles can be made available hierarchically. With
Veraz´s solution, service providers can create and customize new services for customers instantly to be
able to meet and respond to individual needs faster than ever before.

Mr. Houlin Zhao, Director of ITU´s Telecommunication Standardization Bureau (TSB) commended
the Chairman for his leadership, his ability to steer the work of the Assembly to a successful conclusion
and for having achieved sound results consensually. „We agreed new tools, resolutions, decisions and
guidelines that will make ITU-T more efficient and much stronger.“ – Zhao told delegates.
The main highlights of the Assembly include:
– A next-generation networks (NGN) focus spanning the work programme of all study groups
– The creation of a new Study Group on NGN
– The adoption of new resolutions on Internet-related issues 

(ENUM, spam, internationalized domain names, country code top level domain (ccTLD) names)
– The adoption of a resolution on cybersecurity
– The adoption of measures aimed at enhancing a greater involvement of developing countries 

in standardization activities
– A group to oversee the sector´s seminar and workshop programme and to monitor the market for new topic areas
– The inclusion of a gender perspective in the work of the ITU-T with the adoption of a resolution 

on gender mainstreaming 
The setting up of 13 Study Groups with their areas of responsibility and the designation of their chair-
men and vice-chairmen. WTSA also designated the chairman and vice-chairmen of the telecommunica-
tion standardization advisory group (TSAG). A request for a study on the economic effect of call-back
and other similar calling practices in developing countries an how they impact on their ability to develop
their telecommunication networks and services.


