
Software maintenance and testing activities consume
most of software project resources. This fact motivates
research in the field of planning, estimating and track-
ing maintenance and testing resources.

One of the most promising approach for modeling
maintenance and testing effort was suggested by Cal-
zolari et.al. [2]. This model considers as prey the soft-
ware faults which cause environmental needs and cor-
rective actions. Predators are the testers or developers
observing and removing the prey. The dynamical change
of the number of faults in the testing process or after
release shows similarities to predator-prey competition.
The only difference is that faults can not reproduce
new faults.

Similar models was introduced in the literature pre-
viously. Lehman et.al. [5,6] used dynamic models to
describe the evolution of relevant software engineering
metrics. Those models were successful in describing
the changing of the size of software systems among
releases.

Another approach which is close to the one pre-
sented here is in [1] and [8]. The authors gave a com-
prehensive system dynamics model of the software
development process. The equations they suggest The
outcome of their simulation can help in predictions and
making decisions. On the other hand the construction
of these models and the estimation of the parameters
is a hard, human intensive task. As far as predator-prey
like model is concerned, the parameter estimation can
be automated.

1. Modeling testing effort by
differential equations

The classical predator-prey model was proposed by V.
Volterra and A.J. Lotka. In this model a system of two
differential equations model the variation of two popu-
lations. This model was adapted to maintenance and
testing activities by Calzolari et.al. [2] in the following
way: corrective interventions are considered to be pre-

dating software faults and the associated effort is fed
by the discovery of faults.

The result of the adaptation is two new models a lin-
ear and a nonlinear one. The dynamics generated by
these models represents the effort evolution within a
given release, hence when a new release is delivered
the dynamics starts again with another initial values.

1.1. The linear model

The linear model is defined by the following differential
equations [2]:

The first variable denotes the residual faults in the
underlying software system while the second one is the
testing or maintenance effort. Parameters a, b and c
are positive. The first equation describes the decrease
in the number of residual faults as a function of actual
value of testing effort. The latter quantity can increas
with a rate proportional to the available fault number.
The decrease term in the second equation represents
the intrinsic mortality of this population.

The modification of the classical Volterra-Lotka mo-
del was needed because the faults can not reproduce
themselves. A possible system evolution is depicted in
Fig. 1.

1.2. The nonlinear model

The nonlinear model is described by the following dif-
ferential system: (1)

(2)

The negative term in the first equation contains
h(x1) and x2. The first term represents the functional
response of the predators(testers). It describes that
how many faults will be found by each tester depend-
ing on the number of residual faults.

LIX. VOLUME 2004/12 49

Linear and nonlinear analysis of
a testing effort model

GÁBOR STIKKEL, GÁBOR SZEDERKÉNYI

stiko@compalg.inf.elte.hu, szeder@sztaki.hu

Keywords: software maintenance and testing, state observer, parameter estimation

The maintenance and testing effort is modelled as a predator-prey model in the well-known Lotka-Volterra form in order to

facilitate tracking and estimating maintenance and testing resources. Our aim is to find a solution for a crucial software devel-

opment decision problem, namely for determining the end of testing and releasing the product. The method is based on tools

of system theory and is applied on real project data.

Here the Holling function of type 2 is used to model
the functional response:

Parameter a is the asymptotic fault fix rate, while b
is the fault level for which the fault fix rate is halved.
The second equation could be decomposed into two
parts. Current fault fix rate is converted into new cor-
rective effort through the effciency factor e. The sec-
ond term in the second equation shows the intrinsic
decrease of corrective effort over time, with mortality
factor m. Possible trajectories of the two variables can
be seen in Fig. 2.

2. Observer design for the linear model

2.1. Observer theory for
linear time invariant systems

The theory of linear time invariant systems is dealing
with the following system of linear differential equa-
tions:

(3)

(4)

where x represents the state of the system, u is the
input while y is the output.

In the proposed linear model [2] the matrices are

A method for estimating the parameters was pre-
sented in [2] for both linear and nonlinear models. In
the nonlinear case we will suggest another method but
for the linear case parameters are supposed to be
known in the remaining.

From system theoretic point of view it is an interest-
ing question whether the state x can be reproduced
from the input u and the output y. The answer is affir-
mative if the system is observable [7], i.e. y(t) ≡ 0
implies that x(0) = 0. An equivalent characterization of
observability of linear systems is that the kernel of the
matrix

contains only the zero vector.
The observability can be carried out by a state

observer [7] which is another dynamical system of the
form

(5)

The system (5) is called state observer for system
(3) if for all initial states x0, x̂0 and for all input u

2.2. Observer design

The computation of the matrices G,H can be found in
[7]. It can be shown that in our special case G = H = 0,
hence

is the state observer for system (3).

HÍRADÁSTECHNIKA

50 LIX. VOLUME 2004/12

Fig. 1.
A possible evolution of
the l inear model
with parameters
a=0.1, b=1 and c=1.1

Fig. 2.
A possible trajectory of
the nonlinear model
with parameters
a=0.5, b=130, e=6
and m=0.7

The effectiveness of the observer in applications
depends on the initial condition x̂(0). If a project man-
ager can guess the exact value of x1(0) then by know-
ing x2(0) the observer initial state can be set to x̂(0) =
[x1(0) x2(0)]T, and the estimation error (x̂–x), will be iden-
tically zero. It means that the manager is able to track
the number of the residual faults. It is a difficult task to
give an accurate estimation of x1(0). The next section
two methods are suggested how to handle this prob-
lem.

2.3. Estimation methods for
the initial value of the observer

2.3.1. Expert judgements
The first proposed method is rather heuristic. It is

hard to guess the exact value of the initial residual
faults. Instead, one might use data from testing i.e.
number of faults found until a certain time instant of the
project. This number will be a lower bound on x̂(0) and
as the project progress the manager can give more
and more accurate estimates of the number of residual
faults.

Suppose that initially there were 150 faults in a sys-
tem. With this initial condition the model tells us that
there will be approximately 21 faults remaining after the
20. day of testing. The project manager guess an initial
fault containment of 100 which gives an estimation of
14 faults on the 20. day. However, after the 10th day
of testing it has turned out that already 68 faults has
been found. It makes the manager improve his guess
to 170 which results an estimation of 24 faults after the
20. day.

2.3.2. Estimation based on
software reliability growth models

The second method is based on software reliability
models presented in [9] and [10]. These models are dea-
ling with the cumulative number of faults found during
testing as a function of time. Logistic [9] and Gompertz
[10] differential equations and their discrete variants
are fit on empirical data. The input of this procedure is
a few data points i.e. number of faults found during the
first days of testing. It is necessary to have at least as
many data points as the fifth of the whole in order to
have fairly good parameter estimation of the logistic
curve [9].

By knowing the parameters we can predict the total
number of faults found. These predictions can be a
basis of the estimation of the initial value of the observ-
er. The method is depicted in Fig. 3. Other methods for
predicting residual faults and failures can be found in [3].

3. Stability analysis of
the nonlinear model

A very brief stability analysis can be found in [2]. The
stability of the linear model is no matter of discuss: if

the parameters are positive then both eigenvalues of
the system matrix have negative real parts implying the
asymptotic stability of the system. The latter means that
the states of the system tends to zero whatever the ini-
tial condition is. Another qualitative property of an equi-
librium point is its attractiveness. Such a point is attrac-
tive if there exist a neighborhood of it so that if the sys-
tem is initialized from that neighborhood than the solu-
tions tend to the equilibrium point. Necessary attractive
equilibriums should be isolated. But, as we will see the
equilibriums of the nonlinear model constitute a half
line, i.e. they are not attractive as was stated in [2].
This fact motivates the investigations presented in this
section.

Both state in the proposed nonlinear model are sup-
posed to have non-negative values. It can be seen
that in the case when ea – m ≤ 0 the second variable
will be decreasing which is somewhat contradictory to
the process observed in real life situations (testing
effort is used to increase for a certain amount of time).
Hence we can continue the analysis with the reason-
able assumption that ea – m > 0.

The equilibrium points of (1) can be determined by
solving the equations ẋ *

1= 0 and ẋ *
2= 0. The solutions

are (x *
1, 0), where x *

1 is a non-negative number. These
points constitute a half line which immediately implies
that only local stability results make sense in this con-
text. In order to restrict our attention to the stability ana-
lysis of the zero state, the equilibrium point is shifted to
get the following equations:

(6)

(7)

To investigate local stability of the system the Jaco-
bian matrix of its map will be used:

Linear and nonlinear analysis...

LIX. VOLUME 2004/12 51

Fig. 3.
Estimating init ial value of the observer based on

logist ic rel iabi l i ty groowth model

Eigenvalues of the Jacobian are 0 and –m +h(x *
1).

It can be seen that the condition for the second eigen-
value to be negative is x *

1< mb/(ea – m). Hence equi-
librium state (x *

1, 0) is unstable if x *
1≥ mb/(ea – m).

The case of system whose Jacobian has some ei-
genvalue with zero real part is commonly referred to as
a critical case of the asymptotic analysis. Center mani-
fold theory is of great help in analyzing critical cases.

The argument presented in [4] starts with consider-
ing instead of 6, the following form:

(8)

(9)

where A is a matrix having all eigenvalues with neg-
ative real part, B is a matrix having all eigenvalues with
zero real part. Then we have to solve the following par-
tial differential equation:

Theorem 1
The (asymptotic) stability of the zero state of

ζ⋅ = B ζ +ƒ(π(ζ),ζ) (10)

implies the (asymptotic) stability of (y, z) = (0, 0) of (8).

In our case

B = 0,

and the underlying differential equation is ordinary
having the trivial solution namely π(z) ≡ 0. It results that
the reduced equation (10) takes the simple form of

ζ⋅ = 0
implying that all the equilibrium points which satis-

fies 0 ≤ x *
1 < mb / (ea – m) are stable.

4. Parameter estimation

4.1. Parameter estimation of the linear model

Consider again the linear model of dynamic variation of
the testing effort and residual faults. This model has
three positive parameters. The problem of parameter
estimation is that we have to determine the values of a,
b and c from the data on the second variable.

Suppose we have data on x2 in discrete time instan-
ces denoted by x2(0), x̂2(1),..., x̂2(N). We would like to
choose parameter values such that the squared error

is minimal. It was carried out by creating a simulation
model in MatLab and running a built-in optimization tool
which uses simplex method. In order to have a fairly
good estimation we need so many data points such
that the peak of the testing effort curve is reached.

4.2. Nonlinear parameter estimation by
algebraic elimination

As it was visible in section 2, the physical nature of the
testing effort model is basically nonlinear. Moreover, lin-
ear modeling often cannot provide models of satisfac-
tory quality for certain purposes (e.g. control). There-
fore the parameter estimation of the nonlinear model
structure given in (1)-(2) is carried out in this section.

4.2.1 Calculation of a nonlinear input-output model
Considering the assumption that the only measur-

able state variable of the nonlinear model (1)-(2) is x2,
the purpose of this section is to formulate a nonlinear
inputoutput model in the following form:

(11)

where y denotes the measurable output (i.e. y = x2)
and u is a fictitious input which is assumed to be known.
An obvious and computationally simple selection for u
is m in (2).

The aim is now to eliminate the non-measurable
state variable x1 from the state equations and thus to
obtain a model of the form (11). For this, let us rewrite the
state equations and the fictitious output equation as

(12)

(13)

(14)

From (14) and (7) we get

from which x1 can be expressed as

(15)

using the notations n and d for the numerator and
denominator of (15) respectively. Taking the time deriv-
ative of (15) gives

(16)

Using eqs (16), (12) and the notation in (15) we can
eliminate ẋ1 from the state equations i.e.

(17)

which can be rewritten as

(18)

Computing the time derivative of n and d gives the
required input-output model (that can be easily rearran-
ged to the form (11))

HÍRADÁSTECHNIKA

52 LIX. VOLUME 2004/12

(19)

Using the fact that in our case the parameter u = m
is constant and thus u̇ = 0, a simpler form of the model
is obtained

(20)

Introducing the transformed parameters

(21)

gives the following model

(22)

which is linear in the new parameters. Now, c1 and
c2 can be estimated by any of the standard techniques,
measuring only x2.

4.2.2. Parameter estimation
For the practical implementation of the parameter

estimation it’s useful to calculate a discrete-time model
from (22). First, let us introduce the δ operator for the
notation of the numerical derivatives (calculated by
using a simple Euler-approximation) as follows

(23)

where z denotes a discrete time sequence and ts is
the sampling time.

Using (23) the input-output model (22) in discrete
time is written as (24)

which is in a standard regression form

(25)

with (26-28)

Therefore c1 and c2 can be estimated using the well-
known least squares method which minimizes the qua-
dratic criterion

(29)

with respect to θ.
Note that in this case we have to assume that one

parameter from a, b and e is known, and then we can
solve (21) for the remaining two unknown parameters.
This is a strict limitation of the usefulness of the para-
meter estimation method, however it can be used in
order to refine or to check the goodness of previously
estimated parameters.

5. Application of
the linear observer to real data

Our study project was an open, standards based, modu-
lar and distributed application. The source has a length
of approximately 250,000 lines of code (LOC – without

comments) and was written in C++ with an effort of ap-
proximately 75,000 man-hours. We have effort data on
this project (x2 variable) from which parameters can be
estimated, see Fig. 4.

We also have data on faults found during testing
from which we could estimate the initial value of the ob-
server. The goodness of the observer can be tested
because the number of residual faults (i.e. the obser-
ved x1 variable) should be approximately equal to the
difference of our estimated initial value (x1(0)) and the
number of faults found during testing.

The number of faults found during testing was 848.
It makes us to estimate the initial value of the residual
faults as 1,000. Hence the model can be accepted if
the simulation of the first variable results that there are
≈152 faults in the system after test.

Fig. 5. shows the simulation results which tells us
that there are 163 residual faults in the system, hence
the error of the estimation is below 10 percent.

Linear and nonlinear analysis...

LIX. VOLUME 2004/12 53

Fig. 4. Effort data on the project (solid) and the testing
effort given by the estimated parameters

(dashed; a = 0.31, b = 0.9 and c = 1.22)

Fig. 5. Simulation results (residual faults)

Accepting this model we arrived to answer the ques-
tion posed in the title of the paper. Suppose that the
manager would like to continue testing until the esti-
mated fault content of the software system is below 50.
How long shall we test? Running again the simulations
with the identified parameters we can depict Fig. 6.

It suggests that the testing process should continue
for four more weeks to reach the specified quality. The
model can also be used to answer what-if questions re-
garding the trade off between testing effort and soft-
ware quality.

6. Conclusion

Proposed maintenance and testing effort based on lin-
ear and nonlinear Lotka-Volterra systems was revisited
and was investigated from system theoretic point of
view. We have found that state observer for the linear
model can be used to predict residual number of faults
in a software system. It can also give estimation for the
manager how long the testing phase should be contin-
ued in order to reach a specified software quality.
Future work will be focused on model extension and
observer design for the nonlinear model.

Acknowledgements

The authors would like to thank Domonkos Asztalos
(Ericsson Telecommunications Hungary) and Gusztáv
Bártfai (previously Ericsson Telecommunications Hun-
gary) for project data and for valuable comments.

References

[1] T. K. Abdel-Hamid:
The dynamics of software project staffing:
a system dynamics based simulation approach.
IEEE Transactions on Software Engineering,
15(2). 1989, pp.109–119.

[2] F. Calzolari, P. Tonella, G. Antoniol:
Maintenance and testing effort modeled by
linear and nonlinear dynamic systems.
Inform. and Software Techn., 43(2001), pp.477–486.

[3] M. Grottke, K. Dussa-Zieger:
Prediction of Software Failures Based on
Systematic Testing. Electronic Proc. 9th European
Conference on Software Testing Analysis and Review,
(EuroSTAR), Stockholm, 2001.

[4] A. Isidori:
Nonlinear Control Systems. Springer-Verlag, 1995.

[5] M. M. Lehman, D. E. Perry, J. F. Ramil:
Implication of evolution metrics on
software maintenance. Proceedings of the
International Conference on Software Maintenance,
Bethesda, MD, 1998, pp.208–217.

[6] M. M. Lehman, D. E. Perry, J. F. Ramil:
On evidence supporting the feat hypothesis and
the laws of of software evoution. Proceedings of
the 5th International Symposium on Software metrics,
Bethesda, MD, 1998.

[7] J. M. Maciejowski:
Multivariable Feedback Design. Addison-Wesley,
Wokingham, U.K, 1989.

[8] R. Madachy:
System dynamics modelling of an inspection-based
process, Proceedings of the International
Conference on Software Engineering,
Berlin, 1996. pp.376–386.

[9] D. Satoh:
A Discrete Gompertz Equation and
a Software Reliability Growth Model.
IEICE Transactions on Information and Systems,
E83(2000), No.7, pp.1508–1513.

[10] D. Satoh, S. Yamada:
Parameter Estimation of Discrete Logistic Curve
Models for Software Reliability Assessment,
Japan Journal of Industrial and Applied Mathematics,
19(2002), No.1, pp.39–53.

HÍRADÁSTECHNIKA

54 LIX. VOLUME 2004/12

Fig. 6. Simulation result of the first variable

