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In this paper, we present a method for automatic test generation from the formal SDL specification of a protocol. Protocol test-
ing is an important step in the development process, but the creation of test suites is a time consuming task. Automating this
phase reduces the time necessary for implementation, and cuts an important error source. We show how Mutation Analysis
can be used to match test criteria and test cases obtained with a graph exploration algorithm applied on the SDL description
of the system. We then use evolutionary algorithms to select an optimal subset from this initial set of test cases. Using these
methods, we build a complete process for the automated generation of a test suite from the formal specification of a protocol.

As telecommunication companies had to offer more of
services every day, while trying to integrate their net-
works, telecommunication protocols became increas-
ingly complex. At the same time, the reliability of these
networks had to meet ever-higher standards as well.

With this increase in complexity, the effort needed
for the specification of protocols became a serious bur-
den, and the need for reliability and interoperability bet-
ween manufacturers called for more extensive testing.
These problems gave birth to formal specification meth-
ods, and formal testing methods to verify if implemen-
tations behaved according to the specifications.

The most widely used formal languages in the world
of telecommunications are the Specification and De-
scription Language (SDL, [1]) for system specification,
which models a system as parallel Communicating
Finite State Machines (CEFSM), and Tree and Tabular
Combined Notation (TTCN, [2]) for black-box test de-
scription. Today highly integrated and widely used de-
velopment tools [3] exist to aid designers in the speci-
fication and testing process. However, the creation of a
formal test suite still requires considerable effort, and
the human factor remains the most expensive and
error-prone component in the process. As these tests
often have to be run several hundreds or thousands of
times, execution time and hardware requirements are
also a crucial factor.

In this paper, we present a method for automatic
test generation from the SDL description of a system.
The test generation process has four main steps:

1) formal specification in SDL

2) creation of a set of test cases by a state-space

exploration algorithm

3) mutation analysis

4) selection of an optimal subset of test cases

We will first explain the mutation analysis method in
detail; then, we will show how we use evolutionary al-
gorithms to select an optimal subset of test cases from
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the resulting set, and finally, we will illustrate the whole
test generation process by an example on the INRES
protocol.

1. Mutation analysis

1.1. Overview

Mutation analysis is a white-box test case develop-
ment method, which means we possess knowledge on
the internal working of the system. Traditional mutation
analysis has been developed to find errors in program
code, but we use it here on formal protocol specifica-
tions instead to select the appropriate black box test
cases.

In a mutation analysis system, we need to define a
set of mutation operators [4], where each operator rep-
resents an atomic syntactical modification. The use of
these operators is convenient for two reasons: They
allow the formal description of error types, and they
allow the automatic generation of mutants. By applying
systematically the operators on the specification, we
can generate a set of mutants.

A mutation analysis system is made up of three ba-
sic components:

— The original system;

— The mutant system, which contains a small syn-
tactical modification compared to the original sys-
tem. Mutants are obtained by applying the muta-
tion operators, each operator representing a small
syntactical modification;

— An oracle — a human or, in most cases, a pro-
gram, which differentiates the original system from
the mutant by observing its interactions with the
environment.

We assume that the original CEFSM specification is
close to the requirements, and thus test cases detect-
ing syntactical modifications of the specification are
useful.
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Fig. 1. Mutation analysis

We only produce first-order faults — we apply one
mutation at a time — because test cases detecting sim-
ple modifications will also detect complex modifications
created as a sequence of simple modifications [5]

Test cases distinguish a mutant from the original if it
gives a different output. However, part of the mutants
generated by the operators might be semantically equi-
valent to the original system: they give exactly the
same output on all possible inputs. We call these mu-
tants equivalents. We call pseudo-equivalents mutants
that are semantically different from the original system,
but give exactly the same output on all possible inputs.
We should ignore all equivalents during testing, but
should consider all non-equivalents during test case
selection. This creates a serious problem in mutation
analysis, since it is generally not possible to automati-
cally identify equivalents, and the distinction between
equivalents and non-equivalents needs human inter-
action.

1.2. Mutation operators

It is a very important consideration that mutation
operators do not create pseudo-equivalents, and mini-
mize the number of equivalents. The basic principles of
mutation operator definition are:

— Operators should model atomic faults;

— They should only create first order mutants;

— We should only generate syntactically correct

mutants;

— To allow test case generation, we should only

create semantically correct mutants;

— Operators should generate a finite,

and the lowest possible number of mutants.

Five classes of operators have been defined [4] for
CEFSMs, depending on the part of the CEFSM they
modify:

— state, input, output, action, and predicate modify-

ing operators.

For each class, we can give three types of operators
depending on the type of fault they represent:

— augmenting, reducing and exchanging operators.

1.3. Test case — test criteria matching

The following algorithm allows us to assign a set of
test criteria to each test case of a finite sized, unstruc-
tured, and highly redundant test suite, which we can
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obtain for example by a state-space exploring algo-
rithm exploring the system specification. If we apply the
mutation operators to observe inopportune inputs, this
initial test suite must also contain inopportune test
cases.

Let C be a two dimensional matrix of Boolean values.

0) Generate a set of test cases;

1) Apply a mutation operator on the CEFSM to
create the jt mutant;

2) Run all the test cases on the mutant specification,
and observe inconsistencies: if the test case
gives a different result from the original specifi-
cation, the test case detects the given mutant;

3) Create column vector Ci (it column of the C matrix)

— Let Cifj] = 0 if the jtn test case
cannot detect the it mutant;
— Let Cifj] = 1 if the jtn test case

detects the it mutant;

4) Repeat steps 2-4. where i goes from 1 to N,
where N is the number of all the possible
mutants;

5) Acquire the C matrix of criteria,
where rows represent test cases of the original
set, and columns represent the mutants.

2. Test selection with
evolutionary algorithms

The aim of the selection process is to obtain an optimal
subset of test cases from an already existing unstruc-
tured, highly redundant set. To achieve this goal, we
applied three different soft algorithms: the Genetic Al-
gorithm (GA), the Pseudo-Bacterial Genetic Algorithm
(PBGA) and the Bacterial Evolutionary Algorithm (BEA).

We chose to use evolutionary algorithms for test se-
lection because they provide high quality solutions in
acceptable time, can handle very complex cases, and
can be easily integrated into the test generation pro-
cess [6].

2.1. General considerations

Individuals: An individual is a possible solution of
the problem, an optimized test suite in our case. We
had two different ways of representing test suites:
either a fixed length string of N bits, where N is the
number of all the test cases in our original set, each
bit's value being 1 if the test suite includes the corre-
sponding test case (which we called bit-string individu-
als), or a variable size set of values between 1 and N,
where each number represents the number of a test
case in the original set (which we called pointer-set indi-
viduals).

In the latter case, it is of course possible to have
test suites that incorporate the same test cases twice,
but these will have an increased execution cost without
any added value and will be eliminated during the
selection process. We used one or both representation
methods, depending on the algorithm.
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2.2. Genetic
> Test case 1 < Algorithm
Test case 2 The Genetic Algorithm
T is an optimization method
est case 3 )
oot oaso 4 trying to model the pro-
cess of natural selection
> Test case 5 D a— [7]
. .
> | Testcaset E The canonical GA, which
Testcase 7 we employed here, works
Test case 8 < as follows:
Test case 9 <
Test case 10 Initialization
Create initial population
|1|0|o|o|1|1|0|1|1|0| |6|5|9|1|8| Evaluate of initial population
generation := 0

Fig. 2. Bit-string and pointer-set individuals

Test suite cost: test suite cost represents the exe-
cution cost of a test suite, which can mean execution
time as well as hardware requirements.

Let T = {t1,t2,...,tn} be the test suite containing test
cases t1,12,...,tn , and R = {r1,r2,...,rk} the test require-
ments covered by this test suite. We assignthec: T - R
positive function to each set of test cases. The execu-
tion cost of any given T set of test cases is then de-

fined as
o(T)=2, c(t) (1)
teT
The cost of the individual test cases can be arbi-
trarily assigned, or measured during the mutation ana-
lysis phase. We will suppose here that the checking of
each test requirement needs a certain amount of re-
sources and execution time, and the initialization of
each test case requires a certain amount of resources
as well.
Thus the cost of a test case will be given by

c(f) = ¢1 + c2*L @)

where c1 is the initialization cost, ¢2 the cost requi-
red to check each test requirement, and L the number
of covered test requirements.

Objective function: the function that evaluates the
quality of each individual, and which the algorithm tries
to minimize. To obtain the desired test suites, the ob-
jective function should take into account the following:

— Execution cost of the test suite should be

minimized, by minimizing the redundancy in
the test criteria covered by the test cases;

— The test suite should cover all test criteria.

Our objective function is the sum of the execution
cost of all the test cases in the test suite, and a penalty
for each untested requirement

O=c3"C+ c4*M (3)
where C is the cost of the individual, M is the num-
ber untested requirements, and ¢3 and ¢4 are weight-

ing constants, which must be chosen so that it isn’t
economical to omit test cases.
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Generational loop
{
Calculate fitness values
Selection
Recombination
Mutation
Evaluate of new individuals
Insert new individuals into population

generation := generation + 1
} while generation < max. generation

The individuals are bit-string individuals, as the im-
plementation of the crossover step was much more in-
tuitive in this way.

Let’s examine each algorithm step in detail:

Fitness: Fitness of individuals is evaluated by the
linear rank-based method, where the Fifitness of the it
individual is given by

F,«=2—Sp+2*(szv—1)*Lﬁ)_1 4)
Nind _1

where spis the selection pressure (here sp=2), pos(fi)
is the position of the it individual based on the value of
the objective function, and N, is the population size.

Selection: Individuals are selected for breeding by
the Stochastic Universal Sampling method: individuals
are mapped on an axis where each individual has a
length equal to its fitness.

We then generate a random number in the [1..nb_
parents] interval, where nb_parents is the number of
individuals we want to select for breeding. We then add
i*(sum of all fitnesses)/(nb_parents) to this value, where
i 0[0 .. nb_parents — 1], and select each time the indi-
vidual to which this value points on the axis.

Recombination: We use the uniform recombination
method: we generate a random bit pattern; bits of both
parents are then inverted where the value of this mask
is 1, giving the offspring.

Mutation: All offspring are mutated with a small pro-
bability to allow drastic changes. Beginning at a ran-
dom position, we invert each bit of a predefined length
section with Pm probability.
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2.3. Pseudo-Bacterial Genetic Algorithm

Bacterial algorithms, developed in the second half
of the ‘90s, model evolutional processes of bacteria.
The simplest bacterial algorithm is the Pseudo-Bacterial
Genetic Algorithm [8].

At the beginning of the algorithm, we create a ran-
dom individual, on which we apply the bacterial muta-
tion. We make n — 1 copies (clones) of the original indivi-
dual. Then we randomly select a part of the chromoso-
me, which we mutate in each clone, but leave unchan-
ged in the original individual. After the mutation, we
evaluate each individual, and transfer the mutated part
of the best individual to the other clones.

We repeat this mutation-evaluation-selection-rein-
sertion cycle until we have mutated all parts of the chro-
mosome. We then select the best individual, and anni-
hilate the others. We can repeat the cycle until we have
a satisfactory solution, or we have reached a prede-
fined generation number.

The algorithm works in the following way:

1. We create a random population of n individuals.

2. We apply the bacterial mutation (as shown in 2.3)
on all individuals.

3. We apply the gene transfer operation Ninftimes,
where Ninfis the number of infections: during this
step, we divide the population into an upper half
(better individuals), and a lower half (worse indi-
viduals), and transfer genes from the upper half
into the lower half.

4. We repeat steps 2-4. until we get a satisfactory
solution, or reach the maximum number of gene-
rations.

In the case of this algorithm, we had to modify indi-
viduals so that they contain distinct genes, since the
gene transfer operation requires a metric measuring
how “good” each gene constituting the individual is. We
took pointer-set individuals, and divided them into a
predefined number of genes, which are groups of a
variable number of test cases. We
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| Original bacterium have implemented two different ver-
sions of gene fitness:

| clone 1. First version

| clone 2. In this first implementation, the
goodness of a gene is given by the
average cost at which a gene covers
the requirements:

| clone N. the fitness of a gene is given by

Y G
F=- (5)

| clone 1. where Fis the fitness of the gene,

| clone 2. Cithe cost of the test cases, / the set
of test cases of the gene, and R the
number of requirements covered by
the gene.

| clone N. During the gene transfer opera-
tion, we take one of the superior half

Fig. 3. The Pseudo-Bacterial Genetic Algorithm

We have implemented this algorithm with both types
of individuals. In the case of bit-string individuals, the
mutation step is the same as in the case of the GA. In
the case of pointer-set individuals, a mutation has to
allow changes in the length of the mutated individual
(since individuals have no predefined length, and we
have no a priori knowledge of the optimal length).

Thus, mutation can induce three kinds of modification:

— The substitution of a test case by

another test case;
— The deletion of a test case;
— The addition of a test case.

2.4. Bacterial Evolutionary Algorithm

The Bacterial Evolutionary Algorithm is an improved
version of the PBGA, which works on many individuals
in parallel. It was inspired by the gene transfer ability of
bacterial populations [9].
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of the bacteria, and insert its best gene
to replace the worst gene of one of
the bacteria of the lower half:

| 65231961 62145 8458763 | 4855 (2462179

|273 748512|5244725|7236187 351|

|273 748512|4855 |7236187 351|

Fig. 4. Gene transfer 1

Second version

In this approach, we divide the test requirements in
as many parts as there are genes in the bacteria. The
goal is that each gene covers a specific part of the
requirements. The goodness of a gene is defined in
the same manner as the objective function of individu-
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als in the previous cases, but the missed requirements
are only taken into account in the interval covered by
the gene. Thus, the fitness of a gene is given by

F=c1*C + c2*M, (6)

where Fis the fitness of the gene, Cis the cost of
the gene, M, is the number of missed requirements on the
set to be covered by the gene, and c¢1, ¢2 are weight-
ing constants.

During gene transfer, we take a bacterium from the
upper half, and another from the lower half. We take a
random gene of the source bacterium, and if it is better
than the corresponding gene of the destination bac-
terium, we replace the corresponding gene of the des-
tination bacterium with it:

Fig. 5. Gene transfer 2

|39625|72156910|375|7681 61|91361|

|158 6662597120946 (1836 [852397|

|158|7215691o|71 20946|1836|852397|

2.5. Algorithm Comparison

To compare the effectiveness of these algorithms in
test case selection, we ran them on a fictive set of 100
test cases (as it will be shown later, the initial set of test
cases for the INRES protocol only contains 41 test
cases, which is too few to show differences in the con-
vergence of these algorithms). The convergence of the
different algorithms can be seen on Fig. 6.:

Fig. 6. Algorithm convergence

3. Automated test suite generation

We will now show the whole test generation process.
We will illustrate this process by an example on the well-
known INRES sample protocol.

The automated test generation process:

0) We create a formal specification of the protocol in
SDL. Highly developed tools exist for this pur-
pose ([3]). Fig. 7. shows the system overview of the
INRES protocol SDL specification.

1) We apply a state-space exploration algorithm on
the SDL specification, which gives us a highly
redundant, unstructured set of MSC test cases.

2) With mutation analysis, we determine the matrix
of test criteria for this set of test cases. Fig. 8.
shows the full test suite resulting from the explo-
ration of the SDL specification of the INRES sys-
tem, containing 41 test cases, with the cost of
individual test cases and the whole test suite,
where the cost of test cases was calculated
according to (2), with ¢1=20 and c2=5

3) We select an optimal subset of test cases from
this set with one of the evolutionary algorithms
presented above. This gives us a test suite that
covers all test criteria, with minimal redundancy
and execution cost. Fig. 9. shows the reduced
set of test cases for the INRES protocol.

(Note: In this case, the selection of test cases is
quite simple, and although it is not necessarily the case
with very large test suites, all evolutionary algorithms
found the same reduced test suite in a few genera-
tions.)

4. Conclusion

Conformance testing has become a

crucial part in the development pro-

cess of telecommunication protocols.
Since the creation of test suites is a
very time consuming process, auto-
mated test generation plays an in-
creasingly important role in the deve-
lopment process.

We have shown here a complete
method for the automatic generation

of test suites from the SDL descrip-
tion of a system. We have only shown
a simple example for illustration pur-
poses. However, Mutation Analysis
has been shown to work well on real-

life cases ([4]) the motivational force
behind the development of Evolu-
tionary Algorithms was also the han-
dling of extremely complex problems.

This test suite generation process

350
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300 A ¥ B PBGA, bit-string
A PBGA, pointer-set
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generation

is easily implementable, and should
provide a working solution for the
automated test generation of real-

250
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world telecommunication protocols.
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