
Introduction

Privacy homomorphisms were introduced by Rivest,
Adleman and Dertouzos [6] in 1978 to solve the com-
puting delegation problem in the first instance. This typ-
ically occurs when the data owner has only limited com-
puting facilities, i.e. either the computation to be per-
formed is too complex or an unmanageable bulk of
data must be processed. In this case, the owner is con-
strained to deliver his data to a computer centre (data
manager) that is able to perform the necessary compu-
tations. If the data are sensitive, i.e. of a confidential
nature, there is the obvious problem that they could
get into an environment which is not necessarily reli-
able.

This situation emerges in relation of a great number
of Internet-based applications, typically when we are
using a remote service. Even a modest software for
currency conversion or for route planning can fall into
this category, but the classical examples include pro-
grams for portfolio management and income tax cal-
culation, running not on our computer but on a server
operated by third parties. The problem of computing
delegation may also occur in the field of academic re-
search, where for example a medical research team
uses a(n insecure) university mainframe for processing
confidential healthcare records.

The question of data delegation represents a simi-
lar problem. The two kinds of delegation differ from
each other in the fact that in the case of data delega-
tion the results are relevant not for the data owner but
for the data manager. As for the owner, the complete
computing process is indifferent, he often does not
possess the appropriate facilities for performing the
computation, and “lends” his data only for the duration
of the computing process. The data manager, for his
part, wants to own not the raw data, but the processed
data (for example the results of statistical analysis). As
far as sensitive data is concerned, there is again the
problem that this data will get out for the duration of the
“lending” into a not necessarily reliable environment.

Data delegation typically occurs in the case of orga-
nisations having a federal-like structure. The state ad-
ministration has generally a structure like this, but equ-
ally adequate examples are the European Union or the
United States of America. Each member state has its
own data (budget, registration of the population, etc.),
which a central organisation would like to use for ana-
lysing purposes. In return for supplying the data the
member states can require the opportunity to analyse
the collected data. Because of data protection consid-
erations, however, they have no possibility to store da-
ta of other member states, and have neither the com-
puting capacity to perform the necessary operations. In
turn, the central organisation, which is not facing any of
these problems, has no excess capacity to perform for
each member state the computing task they ordered.
How and in which form could the collected data be
transferred to the member states so that all these prob-
lems could be solved?

The secure solution of data delegation could also
expand the application of smart cards. In this way, the
need that a resource-demanding application must run
on the data stored by the card would not present any
problem. The card would simply export the data required
for the computation to the unit running the application.

In both cases of delegation, there is a double chal-
lenge we must meet. On the one hand, we have to pre-
vent the unauthorized access during the data transfer,
and on the other, appropriate measures must be taken
in order to impede that, in the case of computing dele-
gation, the computing software, the computer and its
personnel and, in the case of data delegation, the
members can get (unauthorized) access to valuable
information as regards the raw data, based on the data
made available for them. The deep exploration of the
former problem began as early as before the Internet
had been going to spread out, especially due to the
military and state security applications. Once the world
wide net became the forum of more and more applica-
tions, the same question has been set in some other
way, but the introduction and the convenient imple-

LIX. VOLUME 2004/6 37

Privacy homomorphisms
RÉKA LIMBEK, PÉTER SZIKLAI

Eötvös Loránd University, Faculty of Natural Sciences,
Department of Information Systems,Department of Computer Science

lreka@elte.hu, sziklai@cs.elte.hu

Keywords: data security, calulation- and data-delegation, coding

Cryptographic homomorphisms are used to charge a company with performing calculations where both input and output data

are confident and therefore can be communicated in cryptographic ways only. This requires the use of special cryptography

so that operations can be performed on coded data and decoding the results one gets the same result as if the calculation

were made with uncoded data. This is the main point of the article which also introduces basic methods and possible attacks.

Reviewed

mentation of public key encryption have largely solved
the data security problem.

The aim of this contribution is to investigate the sec-
ond data security problem we mentioned above. Hard-
ware and/or database management solutions are avail-
able in both cases, such as the use of physically pro-
tected processors or data fragments [8]. The cryptogra-
phic solution we are interested in, however, is the appli-
cation of privacy homomorphisms that provide the possi-
bility to transfer the data in an encrypted form to the
unreliable level (computer centre, member states) and to
perform there the relevant operations without data de-
cryption, in their encrypted form. After the results have
been sent back in an encrypted form to the reliable level
(limited-capacity user, central organisation), we will get, af-
ter decryption, the same result as in the case where we
would have performed the operations in the original form.

Higher security can be achieved by combining the
different solutions, but the interpretation of these pos-
sibilities lies beyond the boundary of this contribution.

Terminology

Data appearing in a form that is interpretable for every-
one is called plaintext, irrespective of the data type.
The enciphering of the plaintext is called coding or en-
cryption, the result of which is the ciphertext or encrypt-
ed text. If the legitimate user decrypts the ciphertext,
we are speaking of deciphering of the encrypted text.
The result of this is the original plaintext. If an attacker
tries to decrypt the encrypted text, we have to do with
breaking of the text. The decoding process is a sort of
inversion of the coding process.

The encryption is performed by an encryption algo-
rithm, which possesses a parameter, i.e. the key. Basi-
cally, the deciphering algorithm possesses this key pa-
rameter as well. In the case where both keys are identi-
cal, the process is called symmetric or secret key encryp-
tion. If, however, the two keys are different, it is the case
of asymmetric or public key encryption, where one of
the keys is generally public, i.e. accessible for everyone.

The attacker intending to break either the code or
the encrypting algorithm seeks principally the way to
break the encrypted text but occasionally also to define
the secret key used for the coding. As the security of
an encryption algorithm, i.e. in which measure it is resis-
tant to the attacks, shall never depend on whether the
algorithm itself is known for the public or not, we always
suppose that the attacker knows the encryption me-
thod. For the attacker it is important to define the plain-
text and the key used.

Privacy homomorphisms

Privacy homomorphisms can be used for processing
encrypted data. These homomorphisms actually per-
form the encryption of the data so that the operations
can be executed on the encrypted data in the same
way as otherwise.

A privacy homomorphism represents an operation-
preserving mapping from the set of plaintexts to the set
of encrypted texts. Formally, if S is the set of plaintexts
and S’ is the set of encrypted texts, then an EK: S→S’
homomorphism can be defined where K is the key
used as the parameter of the function.

Let the operations and predicates interpreted on S
and S’ be f1, f2,…, fk and p1, p2,…, pl and f’1, f’2,…, f’k
and p’1, p’2,…, p’l, respectively. Each operation or pre-
dicate within S corresponds with one interpreted on S’,
which generally differs from the original (as we select
the operands from other sets), but it also can be very
similar. The operation-preservation of EK means formal-
ly that for

any a,b,…∈ S and any i =1,…,k
EK(fi (a,b,…)) = f’i(EK(a), EK(b),…),
as well as for any j =1,…,l
pj(a,b,…) = p’j(EK(a), EK(b),…).

The deciphering (decryption) of the encrypted text
is performed by a function DK’: S’→S, with S’ being the
value set of the homomorphism EK and K’ the key. The
function D corresponds to the inverse of E, so that it is
also an operation-preserving mapping. This feature en-
sures that performing the operations on the encrypted
text, then deciphering it yields the expected result, i.e. for
any a,b,…∈ S and i fi(a,b,…) = DK’ (f’i (EK(a), EK(b),…)).

How does such a homomorphism work?

For illustration consider an RSA-related privacy homo-
morphism. As a key we select two large primes K=(p, q),
and denote the product of them by m. The set of plain-
texts is Zm = {0,1,2,…, m-1}, the modulo m residual clas-
ses, with the conventional modulo m operators +, -, ?.
The encrypted correspondent of a plaintext a∈ Zm is

HÍRADÁSTECHNIKA

38 LIX. VOLUME 2004/6

formed by a number pair, the components of which are
the remainders of the division of a with p and q, res-
pectively. Formally it can be expressed by: E(p,q)(a) =
(a mod p, a mod q). On encrypted texts as well, the
modulo m +,-,? will be performed, in this case on every
component. From a pair of numbers, (a mod p, a mod q),
we obtain the original a by means of the Chinese re-
mainder theorem, that is the decryption process is the
application of the Chinese remainder theorem.

We will show the function of the homomorphism
through a numeric example, and as we are interested
in the demonstration, we had to decide on desperate-
ly small parameters. The secret key will be (3, 11), m = 33.
Suppose that the formula to be computed is (12+4)×2
(with modulo 33 operations), thus the three plaintexts
are 12, 4, 2, and the expected result is 32 mod 33. We
send the encrypted plaintext in the following form:
E(3,11)(12) = (0, 1), E(3,11)(4) = (1, 4), E(3,11)(2) = (2, 2). Of
course, we also communicate to the entity performing
the computation that we would like to multiply the sum
of the first two members with the third factor. Accord-
ingly, they compute the value of ((0, 1)+(1, 4))×(2, 2),
where these operations are modulo 33 operations ta-
ken by every component. The computation goes like
this: ((0, 1)+(1, 4))×(2, 2) = (0+1, 1+4)×(2, 2) = (1, 5)×(2, 2)
=(2, 10). We obtain the result in the encrypted form: (2,
10), which we decrypt by means of the Chinese remain-
der theorem. We thus have to solve the congruence
system x≡2 (mod 3), x≡10 (mod 11). We are searching
for the solution in the form x = 3y+11z. As 3y is divisible
by 3, the congruence 11z≡2 (mod 3) must be fulfilled.
For the same reason, 3y≡10 (mod 11). Hence z=1 and
y=7, respectively, that is x= 3×7+11 = 21+11 =32(mod 33).

Therefore, the privacy homomorphism becomes spe-
cifically useful for computing and data delegation prob-
lems because the “encrypted operations” correspond-
ing to the “plain operations” can be performed on the
encrypted text corresponding to the plaintext, and we
obtain the appropriate “plain result” by deciphering the
encrypted result thus achieved.

Why is
a privacy homomorphism good?

First of all, a privacy homomorphism must be appropri-
ate for the given application, that is it must preserve
those operations, which are necessary from the point
of view of the application. In addition, we can raise re-
quirements basically on the efficiency and the security of
the privacy homomorphism. These requirements include
the ease of computation of the function itself, and the
same must be valid also for the deciphering. A further
requirement on the efficiency is that the computation of
the f’i-s and p’i-s corresponding to the operations and
predicates, respectively, of the plaintext must be perfor-
med quickly, and that the encumbrance of the encryp-
ted text must not be much more than that of the plaintext.

From the cryptographic perspective, the question of
security is more exciting. For this examination, we must
overview the (passive) attacks that can be carried out
against a cryptosystem.

Attacks

As far as privacy homomorphisms are concerned, we
can mention essentially three kinds of attacks. All three
are passive in the sense that the attacker tries not to

Privacy homomorphisms

LIX. VOLUME 2004/6 39

modify data or to make the computations physically
impossible, but intends to get valuable information
through the possession of certain data with respect to
the plaintext, the encrypting algorithm or the key.

As we mentioned earlier, the security of the privacy
homomorphism, but also that of any encryption system
shall not depend on whether the attacker knows the
encryption algorithm or not. The key used for the en-
cryption is of course secret, but for the algorithm (or
mapping) we always suppose that it is publicly accessi-
ble (though we do not explicitly intend to provide this
access).

In the simplest case, the attacker has the least stand-
ing-ground to rely on, so he is facing the most complex
task. Texts encrypted with the same key K are available
for him; hence this attack is called ciphertext only at-
tack. The attacker seeks then to abduct as much infor-
mation as possible from this “knowledge base” with re-
spect to the plaintext and the key used.

In the case of known plaintext attacks the attacker
tries to get information related to the key K (and to the
encrypting algorithm) based on plaintext-ciphertext pairs
(a, EK(a)).

The attacker possesses the most information in the
chosen plaintext or ciphertext attacks. In this case, the
attacker has the option to decide on the plaintext or
ciphertext, and ask for the corresponding ciphertext or
plaintext pair, and accordingly tries to find out the key
and the encrypting algorithm.

The complexity of the attacks decreases in the abo-
ve sequence, as the starting information available for
the attacker is increasing. We can also say that the
potency of the attacks is increasing in the sequence,
because the attacker becomes stronger with a steadily
growing arsenal. As regards, however, the preparation
for the attacks, an inverse classification can be of use,
as the attacker only has to tap the communication
channel to execute the ciphertext only attack, while the
chosen text attack needs obviously the addition of
some other practices.

We define the safety of a privacy homomorphism in
a “natural” manner: a homomorphism is safer if it resists
stronger attacks. Generally speaking, the higher a pri-
vacy homomophisms’s security level is, the more useful
it is. But the necessary security level is greatly depend-
ing on the given application. The data delegation re-
quires a higher security degree than the computing del-
egation. In the latter case, the data manager receives
the encrypted text, performs the necessary computa-
tion, and sends back the encrypted result. The data
owner carries out the coding and decoding of the data,
and after decoding it, the communication with respect
to the relevant data will not continue. Thus it is obvious
that the data manager gets into contact only with en-
crypted texts, and therefore he can launch ciphertext
only attacks, which is the weakest among all attacks.
This attack can be made even weaker, if the data ow-
ner uses a different key for encoding for every single
computation needed.

When data delegation is performed, returning the
encrypted result does not terminate the communication
between the data owner and the data manager, ac-
cording to the fact that the data manager claims the
decoded result. Accordingly, the data owner returns it
to the data manager after decoding the encrypted re-
sult. In other words, the data manager will possess
(plaintext, ciphertext) pairs even when the operation is
normal, so that the premises are given for starting a
known plaintext attack. Changing the key frequently is
a useful tool to weaken the attacks in this case as well.

Attack against
the RSA-related homomorphism

The RSA-related homomorphism can be broken, i.e.
the values of p and q can be restored, by a known plain-
text attack. The attack is performed as follows: The plain-
texts M1,M2,… Mr as well as their encrypted correspon-
dents E(p, q)(Mi)=(Ci, Di) are available, with Mi=Ci mod p,
Mi=Di mod q and i =1, 2,…r.

According to the definition of the congruence, it is
obvious that p|Ci-Mi, i =1,…,r. Let us take the greatest
common divisor of these differences, and let it be p’=
gcd{Ci-Mi :i =1,…,r}. Similarly we define q’. As p and q,
respectively, are divisors of the differences Ci-Mi and
Di-Mi, they are also the divisors of their greatest com-
mon divisor (p’ and q’, respectively), i.e. p|p’ and q|q’.
Even for a small r there is a high probability of p’=p and
q’=q. If this is not the case, every new (M, (C, D)) pair
lets the attacker come closer to the secret primes (i.e.
the key) by introducing p”= gcd(C-M, p’) and q”= gcd(C-
M, q’), respectively.

The generalization of the homomorphism presented
in [4] permits to defend fortunately this kind of attacks.
In addition, the RSA-related privacy homomorphism is
so “successful”, that this will be used as a starting point
for the solution of a data delegation system. The next
section shows more details on the results.

What is known about
privacy homomorphisms?

The possibly most restricting feature in the use of pri-
vacy homomorphisms had been detected as early as at
the beginning of the researches. If the person perfor-
ming the computation tasks has an option to encrypt
any constant, and is able to compare encrypted texts
by means of the predicate ≤, then the privacy homo-
morphism is not secure, so that it can not resist even
the weakest attack, i.e. the ciphertext only attack. In
fact, the value of a’=EK(a) can be “caught” through a
binary search, thus the value of a can be easily de-
fined.

To start the search, the encrypted constants are
needed, e.g. it may be known that EK(1) =1’. Hence,
due to the operation preservation, 2’= EK(2) =EK(1+1)

HÍRADÁSTECHNIKA

40 LIX. VOLUME 2004/6

= EK(1)‡EK(1) =1’‡1’ can be calculated. + denotes the
operation which the homomorphism will preserve, and
‡ is its equivalent in the image space. This process can
be continued till the comparison lets us find a 2’n where
2’n-1≤a’≤2’n. While continuing the search, we verify
whether a’≤2’n-1‡2’n-2 is fulfilled. If so, we continue the
search in this half of the interval by applying the bisec-
tional method, i.e. by verifying the a’≤2’n-1‡2’n-3 condi-
tion; if not, we continue to bisect the other half of the
interval and verify the fulfilment of the a’≤2’n-1‡2’n-2‡2’n-

3 condition.
At the end of the search, we will have the sum of

the encrypted powers of two: a’= 2’i‡2’j‡…‡2’m. That is
a’= EK(2i)‡EK(2j)‡…‡EK(2m), which means, due to the
operation preservation, that a’= EK(2i+2j+…+2m), i.e.
EK(a)=EK(2i+2j+…+2m), or in other terms a= 2i+2j+…+2m.
The right-hand side of the equation can be calculated,
so also the value of a can be defined.

It has been proven in [1] that the additive privacy
homomorphisms cannot resist the chosen ciphertext
attack. Note that for additive homomorphism, the set of
ciphertexts can be regarded as a vector space above
the body {0, 1}. Let us select a based in this vector
space (for example the encrypted “powers of two”), and
ask for the parent image of it, i.e. its plain version. Thus
the following pairs are available: (1, 1’), (2, 2’), (22, 2’2),...
Therefore, if a given a’=EK(a) encrypted text is sup-
posed, based on which we want to define a, then log-
ically a’ can be written as a sum of the encrypted pow-
ers of two, i.e. in the selected base: a’=2’i‡2’j‡…‡2’m.
From this point on, the attack can continue in the same
way as in the case mentioned before.

The restriction of additivity outlined in [3] has the
goal to defend this attack. The r-additive privacy homo-
morphisms permit the summation of only r members.
So, if r is sufficiently small and the set of the ciphertexts
is sufficiently large, the above-mentioned attack does
not work, and the homomorphism is secure for cipher-
text only attacks.

The [4] shows a generalization of the RSA-based
homomorphism presented. Even in its original form, the
homomorphism has preserved addition and multiplica-
tion, but as we have seen, it has not been secure a-
gainst a known plaintext attack. The point of the gen-
eralization is that the former encrypted text (a mod p, a
mod q) appears in a more complex form, so there is no
possibility to set up the statements relating to the divisi-
bility.

The result shown in [5] presents a breakthrough in
the number of the operations preserved. Note that this
is a privacy homomorphism, which preserves all four field-
operations (+,-,?,/) and is at the same time resistant
against the ciphertext only attacks. However, as the re-
sults highlighted in [1] say, the homomorphism of such
type is able to achieve a security level where it can
stand also against known plaintext attacks. Finally, [2]
has included an advanced version of the additive and
multiplicative homomorphism introduced in [4], which
already facilitates the division as well and, at the same

time, is provably a secure option in the case of the known
plaintext attacks as well.

Based on this homomorphism, the prototype of a
system delegating sensitive statistical data has been
created and standardised by the authors as a “Method
for secure delegation of statistical data” [7], so we have
no further information on the features of the system.

The above-mentioned homomorphism is a useful
tool for any computation, which needs field-operations
(+,-,?,/) only. More complex financial or engineering
computations may however require additional opera-
tions as well, for example logarithm and exponentia-
tion.

An additional, interesting question is whether the
personal income tax can be solved by means of the pri-
vacy homomorphism. Of course, the relevant tax calcu-
lation software tools can be downloaded from the Inter-
net by means of which the most appropriate declara-
tion version can be found out under the shelter of
one’s own computer, but an application might be more
comfortable that could permit to specify in on-line mode
the imposed sum of the tax, based on different input
data. But because the user would certainly experiment
with a series of values, he would not willingly send out
such data in a form ready for processing.

Logarithmic calculation
with privacy mapping

The logarithmic calculation can be solved by a privacy
mapping operation, which, strictly speaking, cannot be
regarded as a privacy homomorphism. Let R+ be the
set of plaintexts and ciphertexts, i.e. the set of positive
real numbers. Let the key be an arbitrarily chosen pos-
itive integer r. The encrypted version of an a∈ R+ is Er(a)
=ar. The decryption is not exactly the inverse of E, as
we presume that we will have also a logarithmic calcu-
lation between the encryption and the decryption. The
deciphering of a ciphertext a’ is accordingly delivered
by Dr(a’) =a’/r.

It is easy to verify that if we decrypt the logarithm of
the encrypted text, we obtain the logarithm of the plain-
text, because (log(ar))/r = (r×log(a))/r = log(a). It can how-
ever be stated that this is not a classical privacy homo-
morphism, as in this case, the logarithmic operation in-
terpreted on the set of plaintexts is the same as its
counterpart interpreted on the set of the ciphertexts,
thus the following equality will not be fulfilled: Er(log(a))
= log(Er(a)), as (log(a))r ≠ log(ar).

Impediments of the tax calculation

An on-line income tax calculation service is burdened
with the problem of the computing delegation. In this
section we outlined some concepts that could be of
use for the exploration of an appropriate homomor-
phism.

Privacy homomorphisms

LIX. VOLUME 2004/6 41

This service could be operated for example by an
accountant organisation addressed by the tax-paying
entity ordering the calculation of the most advanta-
geous taxation form. The taxpayer is clearly not in the
possession of the extensive knowledge required for
this work, and, on the other hand, he would not willingly
expose his financial situation for the service provider.

Once the aspects able to influence the tax base and
the tax extent taken into account, the calculations will
land sooner or later at a point where we have to define
from the tax schedule the sum of the tax relating to the
income. Because the tax function is linear but changes
interval by interval, ranging the income between the rel-
evant limits must precede the definition of the function
value. For this purpose, we need the encrypted version
of the end points of the intervals and also an encrypt-
ed comparative predicate. The tax function can be sup-
posed to be known for the service provider, and if so,
the text pairs of the end points of the interval (plain, en-
crypted) are available for a possible attack.

Under such conditions the privacy homomorphism
will not be secure, because a searching attack can be
carried out by means of the comparison. Let us sup-
pose that the encrypted image of the income repre-
senting the tax base is x’= EK(x). We intend to use the
tax function for the calculation of the relevant tax value.
First we shall define the tax range or interval in which x’
lies. The breakpoints of the tax function are 0, a, b, c,
and their encrypted correspondents are 0’= EK(0), a’ =
EK(a), b’= EK(b), c’= EK(c). It can be supposed that
a’≤x’≤b’. Then the value of x can be defined on the
interval [a’, b’] by means of the binary search described
earlier.

But we can also choose the solution according to
which we specify the tax schedule individually for each
income sum comprised in every interval [1,N]. This means
that we define the tax function for each value within a
constrained definition domain, of course in an encryp-
ted form. No doubt, the service provider may know the
open tax schedule in its present form as well, that is he
knows the pairs (x, t(x)), with t being the tax function.
Although we also make available the pairs (x’, t(x)’) for
him, the data manager will not be able to compose from
them the quarts without any additional information. Thus
it seems that we did not have shown favour toward the
data manager as a potential attacker by ensuring the
conditions to perform a known plaintext attack. On the
other hand, some apparent efficiency questions are
also arising (encryption and transfer of a huge quanti-
ty of data) that could impair the application possibilities
of the concept.

Summary

The privacy homomorphisms have been introduced in
relation to data delegation and computing delegation,
but because a great number of Internet-based services
are marked by these problems, their application possi-

bility has again come to the fore [8]. The privacy homo-
morphisms are confined into specific limits, but the per-
formance of the statistically relevant calculations at an
unreliable level is ensured by means of a mapping con-
cept being provably secure, which preserves all the
four field-operations (+,-,?,/).

At present there exists no convenient homomor-
phism which could be a viable solution for complex ser-
vices, such as for example in the case of applications
involving logarithm or limit value calculations. Finally we
have outlined a few concepts, which could possibly be
set as a guide for future researches.

References

[1] N. Ahituv, Y. Lapid, S. Neumann:
Processing Encrypted Data,
Communications of the ACM,
Vol.30, No.9, pp.777–780,
September 1987.

[2] J. Domingo-Ferrer:
A Provably Secure Additive and
Multiplicative Privacy Homomorphism,
Information Security 2002,
Lecture Notes in Computer Science,
Vol.2433, pp.471–483

[3] E. Brickell, Y. Yacobi:
On Privacy Homomorphisms, Advances in Cryptology,
EUROCRYPT ‘87,
Lecture Notes in Computer Science,
Vol.304, pp.117–125.

[4] J. Domingo-Ferrer:
A New Privacy Homomorphism and Applications,
Information Processing Letters,
Vol.60, No.5, pp.277–282.,
December 1996.

[5] J. Domingo-Ferrer, J. Herrera-Joancomartí:
A Privacy Homomorphism Allowing Field Operations
on Encrypted Data,
Jornades de Matemàtica Discreta i Algorísmica,
Barcelona, March 1998.

[6] R. L. Rivest, L. Adleman, M. L. Dertouzos:
On Data Banks and Privacy Homomorphisms,
Foundations of Secure Computation,
pp.169–179.,
New York, 1978.

[7] J. Domingo-Ferrer, Ricardo X. Sánchez del Castillo:
Method for secure delegation of statistical data,
P9800608 patent in Spain,
December 2000.

[8] C. Boyens, O. Günther:
Trust is not Enough: Privacy and Security in ASP
and Web Service Environments,
Advances in Databases and Information Systems,
6th East-European Conference, ADBIS 2002,
Lecture Notes in Computer Science,
Vol. 2435, pp.8–22.

HÍRADÁSTECHNIKA

42 LIX. VOLUME 2004/6

