Gránát egykristályok mikrohullámú tulajdonságai és anyag paramétereinek mikrohullámú méréstechnikája

DR. CSABA ISTVÁN TKI

ÖSSZEFOGLALÁS

A cikk a gránát egykristályok mikrohullámú szempontból fontos tulajdonságalt foglalja össze, rövid elemzést ad a giromágneses rezonanciafeltételekről és az anyagparaméterek elvi mérési lehetőségeíről a mikrohullámú frekvencia tartományban. Ismerteti a TKI-ban kidolgozott mérőrendszert és összefoglaló jelleggel megadja az egyes paraméterek meghatározásához szükséges összefűggéseket.

1. Bevezetés

A YIG eszközök egyre szélesebb körű alkalmazása teszi indokolttá a YIG egykristállyal és paramétereinek a méréstechnikájával való foglalkozást. A YIG szűrőket, szűrő-limitereket és YIG hangolású oszcillátorokat elterjedten építik be a modern mikrohullámú rendszerekbe, mérőműszerekbe.

A YIG anyagok legjellemzőbb reprezentánsa az $Y_3Fe_2(FeO_4)_3$ kémiai összetételű YIG anyag, melybe Ga, Al, stb. beötvözésével AlYIG, GaYIG, GaAlYIGet kapunk. Hasonló tulajdonságú a CBV (Calcium-Bizmut-Vanádium-Gránát) is.

Szabályos, köbös kristályszerkezetű (1. ábra) anizotróp anyag. Könnyű mágnesezési iránya az [111] tengelybe, nehéz mágnesezési iránya a [001] tengelybécsik.

Szuperkemény anyag, megmunkálása különleges technológiát (gyémánt szerszámokat) igényel. Alacsony frekvenciákon lágy mágneses anyagként viselkedik. Giromágneses tulajdonságai teszik lehetővé mikrohullámú alkalmazását.

A giromágneses anyagra a következő paraméterek a jellemzők:

Telítési mágnesezettség – $M_{\rm s}$, A/m; Curie hőmérséklet – T_c , °C; Anizotrópia konstansok, – K_1 és

1. ábra. Köbös kristályszerkezetű anyag egységcellája a kristálytani tengelyekkel

Beérkezett: 1985. II. 15. (□)

Híradástechnika XXXVI. évfolyam 1985. 7. szám

A BME Villamosmérnöki Kar Híradástechnikai Szakán szerzett diplomát 1966-ban. Villamosmérnök-matematikus szakmérnöki oklevelet szerzett 1972-ben és egyetemi doktori fokozatot 1979-ben. A Távközlési Kutató Intézetben tudományos kutatóként, majd tudományos osztályvezetőként és 1982 óta tudományos főosztályvezetői beosztásban

dolgozik. Fő kutatási te rülete a mikrohullámú méréstechnika és a hozzá kapcsolódó műszer- és eszközfejlesztések. Jelentős eredményeket ért el a ferritmágneses polikristály- és egykristály anyagok méréstechnikája területén. Tagja a HTE-nek. Levelező tagja az IEC TC 51 nemzetközi bizottságnak és tagja az IEC TC 51 és az IECQ hazai bizottságainak.

 K_2 , VAs/m³ (20 °C-nál nagyobb hőmérsékleteken $K_2 \ll K_1$, ezért csak K_1 -et vesszük figyelembe); Giromágneses viszony $-\gamma$, m/As; Rezonancia vonalszélesség $-\Delta H_0$, A/m; Magnetoelasztikus konstansok $-\lambda_{100}$, λ_{111} ,

Fenti paraméterek értékei függnek az anyag összetételétől, a γ kivételével a hőmérséklettől. A rezonancia vonalszélesség frekvenciafüggő, mért értéke alak és felületi finomság függő is. Polírozott felületű, gömb alakú mintákat alkalmaznak legelterjedtebben a YIG eszközökben. A YIG filmek alkalmazása napjainkban egyre terjed a MIC áramkörökben.

A TKI-ban egy, a 9 GHz-es frekvenciatartományban üzemelő mérőrendszer került kifejlesztésre.

A mérés lehetővé teszi a gránát egykristályok fent említett paramétereinek szobahőmérsékleten történő meghatározását, valamint orientált és botra ragasztott gömbök orientálási pontosságának ellenőrzését. A mérőrendszer mikrohullámú részei csőtápvonalas felépítésűek. A mérő vonal mozgatható rövidzárral lezárt hullámvezető.

A rendszer olyan $\emptyset 0,6-2,0$ mm-es orientálatlan, vagy orientált YIG gömbök mérését teszi lehetővé, melyek rezonancia vonalszélessége 24–300 A/m, telítési mágnesezettsége pedig 16–142 kA/m közé esik.

2. Giromágneses tulajdonságok

Az anyag giromágneses viselkedése a következő módon írható le, ha a *homogén* spin-precesszió gerjed csak a mintában.

A mozgásegyenletből kiindulva, annak a határfeltételeket kielégítő megoldásai adják a giromágneses

2. ábra. Giromágneses rezonancia orientáltságtól való függése

rezonancia feltételeket, valamint a $\overline{b} = f(\overline{h})$ kapcsolatot.

Az *w*, rezonanciafrekvenciát megadó Kittel-egyenlet a következőképpen módosul az egyes esetekben:

a) A vizsgált YIG mintára nem hat erő, de véges alakú és anizotróp. Ekkor a rezonancia feltétel a következő

$$\omega_{r} = \gamma \{ [H_{0k} + (N_{x} + N_{x}^{a} - N_{z})M_{s}] \cdot [H_{0k} + (N_{y} + N_{y}^{a} - N_{z})M_{s}] \}^{1/a}, \qquad (1)$$

ahol H_{0k} – külső polarizáló mágnestér, N_x , N_y , N_z – az alaklemágnesezési együtthatók az egyes koordinátatengelyek irányában ($N_x + N_y + N_z = 1$), N_x^a és N_y^a – az anizotrópia hatását leíró együtthatók.

Mindkét lemágnesezési együttható rendszer diagonál tenzor formájában írható fel általános tárgyalás esetén $-\mathbf{N}$ és \mathbf{N}^{a} [2], [4].

Gömb alakú mintára $(N_x = N_y = N_z = 1/3)$ az anizotrópia hatásokat figyelembe véve a következő egyszerűsített rezonancia feltételt kapjuk:

$$\omega_{r} = \gamma \left[H_{0k}^{2} + H_{ok} \frac{K_{1}}{\mu_{0} M_{s}} \left(4 - 5 \sin^{2} \Theta - \frac{15}{4} \sin^{2} 2\Theta \right) \right]^{1/2}$$
(2)

áhol μ_0 vákuum permeabilitása és Θ a polarizáló mágnestér és a minta [001] kristálytani tengelye által bezárt szög az [1, 1, 0] síkban.

Az ω_r -állandó esetben a rezonanciához tartozó mágnestér értékeket a 2. ábra mutatja Θ függvényében. Az egyes kristálytani tengelyekhez tartozó rezonancia feltételek a következők lesznek, ha a (2) egyenletbe behelyettesítjük Θ aktuális értékeit:

$$\omega_{r} = \gamma \left(H_{0k}^{[001]} + \frac{K_{1}}{\mu_{0}M_{s}} \right), \text{ ha } \Theta = 0^{\circ},$$

$$\omega_{r} = \gamma \left[\left(H_{0k}^{[110]} + \frac{K_{1}}{\mu_{0}M_{s}} \right) \left(H_{0k}^{[110]} - \frac{2K_{1}}{\mu_{0}M_{s}} \right) \right]^{1/2}, \text{ ha } \Theta = 90^{\circ},$$

(3)

$$\omega_r = \gamma \left(H_{0k}^{[111]} - \frac{4}{3} \frac{K_1}{\mu_0 M_s} \right)$$
, ha $\Theta = 54^\circ 45'$

ahol

$$H_{0k}^{[001]}, H_{0k}^{[110]}$$
 és $H_{0k}^{[111]}$

3. ábra. A vizsgált minta különböző határfeltételek között

az egyes kristálytani tengelyek irányában rezonanciához tartozó polarizáló mágnestér értékek.

b) Ha a vizsgált YIG minta gömb alakú, anizotróp és mechanikai feszültség hat rá (3. ábra) a rezonancia feltételek kis mértékű változása tapasztalható. A változás mértéke függ a mintára ható mechanikai feszültségtől, a minta anizotrópia-, valamint magnetoelasztikus tulajdonságaitól. Ha a mintára ható feszültség (σ) a [011] irányban hat, akkor a rezonanciafeltételek a következők lesznek különböző irányú H_{0k} – k esetén [5], [6]:

$$\omega_{r} = \gamma \left[\left(H_{0k}^{[100]} + \frac{2K_{1}}{\mu_{0}M_{s}} + \frac{3}{2}\sigma \frac{\lambda_{100}}{\mu_{0}M_{s}} \right)^{2} - \left(\frac{3}{2}\sigma \frac{\lambda_{111}}{\mu_{0}M_{s}} \right)^{2} \right]^{1/2}$$
(4)

amikor a H_{0k} [100] irányú.

$$\omega_{r} = \gamma \left[\left(H_{0k}^{[1\bar{1}0]} + \frac{K_{1}}{t^{\iota_{0}}M_{s}} - \frac{3}{2} \frac{\lambda_{100} - \lambda_{111}}{\mu_{0}M_{s}} \sigma \right) \times \left(H_{0k}^{[1\bar{1}0]} - \frac{2K_{1}}{\mu_{0}M_{s}} + 3\frac{\lambda_{111}}{\mu_{0}M_{s}} \sigma \right) \right]^{1/2}, \quad (5)$$

ha a H_{0k} [110] irányú és

$$\omega_{r} = \gamma \left[\left(H_{0k}^{[1\bar{1}1]} + \frac{4}{3} \frac{K_{1}}{\mu_{0}M_{s}} \right)^{2} + 3 \sigma \lambda_{111} \left(H_{0k}^{[1\bar{1}1]} - \frac{4}{3} \frac{K_{1}}{\mu_{0}M_{s}} \right]^{1/2} \right],$$
(6)

ha a H_{0k} [111] irányú.

c) Abban az esetben, amikor nem ideálisak a feltételek a mintán belüli homogén spin precesszió létrejöttére, spin hullámok jönnek létre, amelyeknek alacsony hullámszámokhoz tartozó módusai a magnetosztatikus módusok.

A legegyszerűbb módusok az (n, m, θ) számhármassal adhatók meg [2], [3]. Ebben a rendszerben a homogén (eddig tárgyalt) spin precesszióhoz az (1, 1, 0) számhármas tartozik. Külön jelentőséggel bírnak az (m + 1, m, 0) és az (m, m, 0) módusok, mivel frekvencia, ill. mágnestér függetlenek. Az (1, 1, 0) alapmódustól vett távolságuk a minta alakjától és telítési

Híradástechnika XXXVI. évfolyam 1985. 7. szám

mágnesezettségétől függ. Ez ad lehetőséget gömb alakú minta esetén az M_s meghatározására a mikrohullámú frekvenciatartományban.

A rezonanciafeltételt bővítve a magnetosztatikus módusok hatásával is, általánosan írható:

$$\omega_{r} = \gamma \{ [H_{0k}^{(n,m,0)} + (N_{x}^{a} - N_{z} + N_{M}^{(n,m,0)})M_{s}] \times \\ \times [H_{0k}^{(n,m,0)} + (N_{y}^{a} - N_{z} + N_{M}^{(n,m,0)}M_{s}] \}^{1/2},$$
(7)

ahol $N_{M}^{(n, m, 0)}$ az (n, m, 0) módus rezonanciára gyakorolt hatását leíró tag.

d) A YIG egykristályok felhasználása szempontjából jelentős az alsó határfrekvencia, amelynél még felhasználhatók az anyagok. A mintának telítésig kell mágnesezettnek lenni a fenti jelenségek létrehozása céljából. Az alsó határfrekvencia értéke $-\omega_A =$ $= \gamma N_z M_s$, amely alatt a giromágneses rezonanciát adó mágnestér már nem viszi telítésbe az anyagot.

A másik kritikus frekvencia érték $\omega_{\rm krit} = 2\gamma N_z M_s$, amely felett a mintát tartalmazó eszköz lineáris lesz. $\omega_A \leq \omega \leq \omega_{\rm krit}$ frekvenciatartományban az eszköz ún. koincidencia limiterként működik.

e) A mozgásegyenlet megoldásaként adódóm = f(h)kapcsolat a következő

$$\widetilde{\mathbf{m}} = \vec{\chi}_k \widetilde{\mathbf{h}}_k = \begin{bmatrix} \chi_{kx} & j \varkappa_k & 0 \\ -j \varkappa_k & \chi_{ky} & 0 \\ 0 & 0 & 0 \end{bmatrix} \widetilde{\mathbf{h}}_k$$
(8)

ahol $\overline{\tilde{\chi}_k}$ az ún. külső mágneses szuszceptibilitás tenzor, amely az alak és anizotrópia hatásokat is magában foglalja.

A (8) összefüggés ilyen formában akkor érvényes, ha a mintát telítésig mágnesező polarizáló mágnestér z irányú. A $\overline{\chi}_k$ részletes kifejtése a [2] és [4] szakirodalmakban található.

Az anyag belső és külső (látszólagos) szuszceptibilitás tenzorai közötti kapcsolat a következő

és

$$\bar{\chi}_{k} = [\bar{\mathbf{I}} + \bar{\chi}(\bar{\mathbf{N}} + \bar{\mathbf{N}}^{a})]^{-1}\bar{\chi}$$
(9)
$$\bar{\chi} = \bar{\chi}_{k}[\bar{\mathbf{I}} - (\bar{\mathbf{N}} + \bar{\mathbf{N}}^{a})\bar{\chi}_{k}]^{-1},$$

ahol \overline{I} – egységtenzor, $\overline{\chi}$ – izotróp anyag belső szuszceptibilitás tenzora.

Gömb alakú mintát feltételezve, valamint elhanyagolva az anizotrópia hatását, amit vizsgálatainkban a fizikai kép lényeges torzítása nélkül megtehetünk, a $\bar{\chi}_k$ elemeire a következő, könnyen kezelhető formulákat kapjuk:

$$\chi_{kx} = \chi_{ky} = \chi_k = \frac{\omega_M T}{2(1+4Q_0^2\delta^2)} [(4Q_0)^{-1} - 2Q_0\delta - j],$$
(10)
$$\varkappa_k = \frac{\omega_M T}{2(1+4Q_0^2\delta^2)} [-(4Q_0)^{-1} - 2Q_0\delta - j].$$

Ahol $\delta = (\omega - \omega_0)/\omega_0/\omega_0$ relatív elhangolás, $Q_0 = \omega_0/\gamma \Delta H_0$ jósági tényező, $\omega_M = \gamma M_s$, $\omega_0 = \gamma H_{0k}$, $\Delta H_0 = 2/\gamma T$, T spin processzió lecsengési ideje.

A $\chi_k = \chi'_k - j\chi''_k$ és $\varkappa_k = \varkappa'_k - j\varkappa''_k$ komplex mennyiségek az anyag veszteségei miatt. A ΔH_0 a $\chi''_{max}/2$ -hőz tartozó mágnesterek különbsége, mely szoros kapcsolatban van az anyag veszteségeivel.

Híradástechnika XXXVI. évfolyam 1985. 7. szám

3. A paramétermérések elvi alapjai

A mintában disszipált teljesítmény, amikor homogén spin precesszió jön létre benne, a következő formában írható, ha a $\tilde{\chi}_k$ elemek ismeretét tételezzük fel

$$P_{d} = -\frac{1}{2} \omega \mu_{0} Im \left\{ \int_{V,} \overline{\bar{\chi}}_{k} \overline{\mathbf{h}}_{k} \left(\overline{\mathbf{I}} - \overline{\mathbf{N}} \ \overline{\bar{\chi}}_{k} \right)^{*} \overline{\mathbf{h}}_{k}^{*} \mathrm{dV} \right\}, \text{ (i i)}$$

ahol V_s a minta térfogata, \mathbf{h}_k^* -a külső gerjesztő RF mágnestér komplex konjugáltja.

Ha a minta a TE vagy TEM módusú mikrohullámú vonalban $\bar{h}_{ky} = 0$ helyre van téve, méretei kicsik a hullámhosszhoz képest, azaz h_{kx} homogénnek tekinthető a mintában és $h_{kx} = \hat{h}_{kx}$, akkor

$$P_d = \frac{1}{2} \omega \mu_o V_s \chi_{kx} |\hat{h}_{kx}|^2 \tag{12}$$

formában írható ahol h_{kx} a h_{kx} csúcsértéke. A mintát gerjesztő $\overline{h_k}$ mágnestér a mikrohullámú vonalban haladó \overline{h} és a minta, mint mágneses dipólus által kisugárzott mágnestér — vektor összegeként írható fel közvetlenül a minta közelében.

a) Rövidzárral lezárt mérővonalba helyezett minta esetén, ha a mérővonalban TE_{10} módus gerjed (4. ábra), a $\bar{\mathbf{h}}_k$ mágnestér, melybe a minta merül, a következő lesz

ahol Γ_r rövidzár által a minta helyén létrehozott reflexiós tényező, h_0 hullámvezetőben a mágnestér amplitúdója,

4. ábra. Rövidre zárt mérővonal a behelyezett mintával

5. ábra. Rövidre zárt mérővonalba helyezett minta helyettesttő képe

Amikor a minta az ábrán jelölt helyzetben van (x=a/2, z=b/2), akkor

$$\bar{\mathbf{h}}_{k} = \bar{\mathbf{i}} h_{kx} = \frac{(1 - \Gamma_{r})h_{0}}{1 + jA(1 - \Gamma_{r})\chi_{kx}}, \ A = \frac{2\pi M_{s}}{a \cdot b \cdot \lambda_{g}}.$$
 (14)

A (12) és (14) egyenlet alapján

$$P_{d} = P_{0} \frac{4\beta'}{(1+\beta')^{2} + 4Q_{0}^{2}\delta'^{2}}$$
(15)

ahol β' csatolási tényező, δ' relatív elhangolás és $P_0 = abz_g h_0^3/4$ vonalban haladó mikrohullámú teljesítmény,

$$\beta' = \beta_0 \cos^2 \frac{2\pi}{\lambda_g} l, \qquad \beta_0 = A \frac{M_s}{\Delta H_0},$$
$$\delta' = \delta - \frac{\beta_0}{4Q_0} \sin^2 \frac{4\pi}{\lambda_g} l. \qquad (16)$$

Látható, hogy mind a csatolási tényező, mind a relatív hangolási paraméter függ a minta és a rövidzár távolságától.

A rendszer az 5. ábrán látható helyettesítő képpel adható meg a (14)-(15) egyenletek alapján.

A vonalban reflektált teljesítmény

$$P_{r} = P_{0}[(\beta'-1)^{2} + 4Q_{0}^{2}\delta'^{2}]/[(\beta'+1)^{2} + 4Q_{0}^{2}\delta'^{2}].$$
 (17)

Giromágneses rezonancián P, minimális lesz:

$$P_{rm} = P_0(\beta' - i)^2 / (\beta' + i)^2$$
(18)

amiből β' meghatározható a csatolás jellegének ismeretében.

A $P_r = f(\gamma H_{0k})$ görbét giromágneses rezonancia környékén a 6. ábra mutatja.

Az 5. ábra helyettesítő képének analízise és a 6. ábra alapján megadhatjuk a mért vonalszélesség $-\Delta H_L$ és az ún. terheletlen rezonancia vonalszélesség $-\Delta H_0$ közötti kapcsolatot

$$\Delta H_0 = \frac{\Delta H_L}{1+\beta'} \quad \text{és } \beta' = \frac{1+\sqrt{P_0/P_{rm}}}{\pm \sqrt{P_0/P_{rm}}-1} \tag{19}$$

b) Transzmissziós mérővonal alkalmazása esetén a fenti gondolatmenet alapján hasonló összefüggéseket kapunk [4].

6. ábra. $P_r = f(\gamma H_{0k})$ a giromágneses rezonancia tartományban

4. Mérőrendszer rövidre zárt mérővonallal

A mérőrendszer blokksémája a 7. ábrán látható. A rendszer alkalmas a ΔH_0 , K_1 , λ_{100} , λ_{111} és M_s mérésére, valamint orientált és botra ragasztott YIG gömbök orientálási pontosságának ellenőrzésére. A rendszer paraméterei a következők: mérőfrekvencia: 9140 MHz, stabilitása: $5 \cdot 10^{-6}$ /óra; kimenő RF szint stabilitása: 0,05 dB/20'; csillapitásmérés pontossága: 0,1 dB; polarizáló mágnestér stabilitása: $\pm 1 \cdot 10^{-5}$ /óra; lassú mágnestér sweep bármely térértéknél; mágnestérmérés pontossága: ± 40 A/m (lock-in rendszert alkalmazva ± 4 A/m); térkülönbség mérési pontossága ± 4 A/m; giromágneses rezonancián a max. csillapításváltozás 8 dB lehet; illesztetlenségi hibák: $\pm 2\%$.

 ΔH_0 mérése történhet a $\chi'_{k \max}$ félértékéhez tartozó mágnesterek közvetlen mérésével, vagy X - Y koordináta íróval ábrázolt rezonanciagörbe alapján.

Közvetlen $(1/2)\chi'_{k \max}$ -hoz tartozó mágnestér mérés esetén forgócsillapítót és referenciaszint indikátort alkalmazva az $(1/2)\chi'_{k \max}$ -hoz tartozó csillapítóállás

$$P_{r1/2}^{dB} = P_{rm}^{dB} - 3 + 10 \, \lg \left[\text{num } \lg \frac{P_0^{dB} - P_{rm}^{dB}}{10} + 1 \right], \quad (20)$$

ahol P_{rm}^{dB} — a giromágneses rezonanciához tartozó csillapító állás, P_0^{dB} — a giromágneses rezonanciától távoli esetben a csillapító állása.

A csatolási tényező

$$\beta' = \frac{\text{num } \lg \left[\frac{1}{20} \left(P_0^{dB} - P_{rm}^{dB} \right) \right] \mp 1}{\text{num } \lg \left[\frac{1}{20} \left(P_0^{dB} - P_{rm}^{dB} \right) \right] \pm 1}$$
(21)

összefüggéssel számítható. A felső előjelek $\beta' < 1$, az alsók $\beta' > 1$ esetben érvényesek.

Anizotrópia konstans mérése orientált mintán történik. Az egyes kristálytani tengelyekhez tartozó

Híradástechnika XXXVI. évfolyam 1985. 7. szám

7. ábra. Mérőrendszer blokksémája 1, 2 – Gunn-oszcillátor és tápegysége; 3, 10, 18 – izolá-tor; 4 – iránycsatoló; 5 – csillapító; 6 – cirkulátor; 7 – mérővonal; 8 – polarizáló elektromágnes, 9 – pre-cíziós csillapító; 11, 19 – kristályszerelvény; 12 in-dikátor; 13 – X–Y koord. író; 14 – el. mágnes táp-egység; 15 – protonrezonanciás mágnestér mérő; 16 – digitális frekvencia mérő; 17 – oszcilloszkóp; 20 – erősítő; 21 – oszcilloszkóp; 22 – hangfrekv. generátor; 23. térmod. tekercspár

rezonanciafeltételek ismeretében a (3) egyenleteket felhasználva

$$\frac{K_1}{\mu_0 M_s} = 0.3 \left(H_{0k}^{[111]} - H_{0k}^{[001]} \right)$$

és

$$6\left(\frac{K_{1}}{\mu_{0}M_{s}}\right)^{2} + (4H_{0k}^{[001]} + H_{0k}^{[110]})\frac{K_{1}}{\mu_{0}M_{s}} + (H_{0k}^{[001]})^{2} - (H_{0k}^{[110]})^{2} = 0$$

$$(22)$$

alapján a $K_1/\mu_0 M_s$ számítható.

A magnetoelasztikus konstansok meghatározása irányított és mechanikai feszültség alá helyezett mintán végzett mérések alapján történik. A (3, 4, 5, 6) összefüggések alapján

$$\lambda_{100} = \frac{3}{2} \frac{\mu_0 M_s}{\sigma} \delta H_{0k}^{[100]} \tag{23}$$

$$\lambda_{111} = \frac{4}{9} \frac{\mu_0 M_s}{a} \left[\left(i - \frac{K_1}{2\mu_0 M_s H_{0k}^{[\bar{110}]}} \right) \delta H_{0k}^{[\bar{110}]} + \right]$$

$$+\frac{1}{2} \left(1 - \frac{2K_1}{\mu_0 M_s H_{0k}^{[1\bar{1}0]}} \right) \delta H_{0k}^{[100]} \right]$$
(24)

ha
$$1 \gg \frac{K_1}{2\mu_0 M_s H_{0k}^{[1\bar{1}0]}}$$
 akkor
 $\lambda_{111} \approx \frac{4}{9} \frac{\mu_0 M_s}{\sigma} \left(\delta H_{0k}^{[1\bar{1}0]} + \frac{1}{2} \delta H_{0k}^{[100]} \right)$ (25)

Híradástechnika XXXVI. évfolyam 1985. 7. szám

míg a (3) és (6) egyenlet alapján

$$\lambda_{111} \approx \frac{8}{13} \frac{\mu_0 M_s}{\sigma} \left(\delta H_{0k}^{[1\bar{1}1]} + \frac{1}{12} \delta H_{0k}^{[100]} \right) \tag{26}$$

H32 - 7

ahol

és

$$\partial H_{0k}^{[110]} = H_{0k}^{[100]} - H_{0k\delta}^{[100]}, \ \partial H_{0k}^{[1\overline{1}0]} = H_{0k}^{[1\overline{1}0]} - H_{0k\sigma}^{[1\overline{1}0]}$$

$$\delta H_{0k}^{[1\bar{1}1]} = H_{0k}^{[f\bar{1}1]} - H_{0k\sigma}^{[1\bar{1}1]}$$

A a index a feszültség alatt levő minta esetén a rezonanciához tartozó mágnestérérték az egyes kristálytani tengely irányokban.

 $\sigma\!=\!F\!/\!A_{\rm eff},\;A_{\rm eff}\!=\!0,\!85\!\cdot\!\pi\!\cdot\!R^2,\;F-$ mintára ható erő, $R-\;YIG$ gömb sugara.

Telítési mágnesezettség meghatározása a magnetosztatikus módusok egymástól vett távolságainak ismeretében történik a módusok azonosítása után [3], [4]. A (7) egyenlet alapján gömb alakú mintára a következő összefüggést kapjuk

$$M_{s} = \frac{H_{0k}^{(n, m, 0)} - H_{0k}^{(1, 1, 0)}}{N_{M}^{(n, m, 0)} - 1/3}$$
(27)
$$N_{M}^{(n, m, 0)} = \frac{m}{2m + 1}, \text{ ha } n = m,$$

$$N_{M}^{(n, m, 0)} = \frac{m}{2m + 3}, \text{ ha } n = m + 1,$$

313

mágnestér-különbség mérési hiba $-o_M, \%$)

ahol $H_{0k}^{(n, m, 0)}$ az (n, m, 0) rezonanciahelyéhez tartozó mágnestérérték.

Orientálás ellenőrzése orientált mintákon történik a 2. ábrán látható görbe szerinti szélső értékek geometriailag helyes elrendezésének vizsgálatával. A két könnyű mágnesezési irányhoz [111] tartozó H^[111] térnek meg kell egyezni helyes orientáltság esetén.

5. Mérési eredmények és következtetések

A fentiekben analizált mérések elvégzésére a mérőrendszer alkalmas. Az ellenőrző mérések azt mutatják, hogy az elvileg számított hibahatáron belül vannak azok az eredmények, melyek értékeit első sorban a mérőrendszer műszaki paraméterei befolyásolják [1], [4], [6].

Megállapítható, hogy a ΔH_0 mérési hibája $< \pm 10\%$, de függ az aktuális mért értéktől, mint az a 8. ábrán látható.

A $K_1/\mu_0 M_s$ mérési eredmények általában 30%-kal kisebbek, mint a statikus módszerrel (RSMM) mért értékek, melynek oka a mérések nem azonos határfeltételeiben rejlik. A telítési mágnesezettség mérési eredmények 10%-nál kisebb mértékben térnek el a statikus mérési módszerekkel (VSMM és mágneses inga) kapott értékektől. A mérési bizonytalanság ± 300 A/m-nél nem nagyobb. A λ_{100} és λ_{111} mérési eredmények hibahatáron ($\pm 10\%$) belül megegyeznek a szakirodalomban közöltekkel.

IRODALOM

- [1] Csaba I.: Gránát egykristályok jellemző paraméte-reinek mérése a mikrohullámú frekvencia tarto-TKI Köziemények, 1977. 2. szám. mányban.
- 13-48. old.
 [2] Dr. Almássy Gy.: Mikrohullámú kézikönyv. Mű-szaki Könyvkiadó, 1975.
 [3] B. Lax, K. J. Button: Microwave Ferrites and Environmentation MaCrow Hill Book Company. Inc.
- Ferrimagnetics. McGraw-Hill Book Company, Inc. 1962.
- [4] Csaba I.: Gránát egykristályok mágneses paramétereinek meghatározása és vizsgálata a mikrohullá-mú frekvencia tartományban. Doktori értekezés, 1978.
- [5] A. B. Smith: A Ferrimagnetic Resonance Method of Measuring Magnetostriction Constants. Rev. of Sci. Instr. Vol. 39. No. 3. 1968 pp. 378-385.
 [6] Csaba, I.: Several Remarks on Measurements of Measureme
- Magnetoelastic Constants of pure and dopped YIG Single Crystal Materials. Proc. of International Conference on Microwave Ferrites. Szmolenice, CSSR. 1984. pp. 307.