## Korszerű, pirografittal bevont rácsú adócsövek gyártástechnológiája

CSERHALMI TIBOR Egyesült Izzó

#### ÖSSZEFOGLALÁS

Korszerű, nagy teljesítményű adó- és generátorcsövek egyik leg-jobban igénybe vett, a cső működése szempontjából legkritikusabb alkatrésze a rács. Minél nagyobb frekvenciákra készül egy adócsö, annál kisebbeknek kell lenniük a távolságoknak a rács és az elektró-dák között. Nő a rács bőterhelése. A rács hőterhelése körülbelül ará-nyosan növekszik a cső teljesítményével is. Ezért a rács anyagának egyrészt jó hővezető-képességűnek, másrészt nagy sugárzási egyilt-hatójúnak kell lennie. A megnövekedett hőmérsékleten is kevés primer és szekunder elektront szabad csak emittálniuk. A fémrácso-kat a felület lesugárzási és primer-, valamint szekunderemisszlós tulajdonságainak javitására pirograilírtéteggel vontuk be. Vizsgáltuk a pirolízis körülményeinek, különböző közbenső rétegek alkalmazá-sának hatását a kialakult bevonat szerkezetére, mechanikai, fizikai és elektrofizikai tulajdonságaira. Kisérleti eredményeink alapján ki-dolgoztunk egy gyártástechnológiát, melynek alapján kiválóan ala-csony rácsemisszlójú csövekel tudunk előállítani. ( $\Delta$ )

#### I. Bevezetés

Korszerű, nagy teljesítményű adó- és generátoresövek egyik legjobban igénybe vett, a cső működése szempontjából legkritikusabb alkatrésze a rács. Minél nagyobb frekvenciákra készül egy cső, annál kisebbnek kell lenniük a távolságoknak a rács és az elektródák között. Nő a rács hőterhelése. A rács hőterhelése körülbelül arányosan növekszik a cső teljesítményével is. Ezért a rács anyagának egyrészt jó hővezetőképességűnek, másrészt nagy sugárzási együtthatójúnak kell lennie. A megnövekedett hőmérsékleten is kevés primer és szekunder elektront szabad csak emittálniuk. A fémrácsokat – melyek legtöbbnyire molibdén huzalból készülnek, mi a kísérleteknél mindig ezt használtuk – a felület lesugárzási és primer-, valamint szekunderemissziós tulajdonságainak javítására különböző bevonatokkal látják el. Bevonatként nagy kilépési munkájú arany-, platina vagy cirkonbevonatot, különböző fémkarbidokat használnak. A legújabb kutatások eredményeként jó eredménnyel alkalmaznak grafit rácsbevonatot (1).

A grafit minden szempontból ideális anyag. Kilépési munkája nagy, szekunderemissziója kb. fele a fémekének, sugárzási együtthatója kb. kétszerese a fémekre jellemző értéknek. Szublimációs hőmérséklete kb. 3600 K°, gőznyomása 2000 K° körül kb. 2.10<sup>-5</sup> Pa az egyik legkisebb a vákuumtechnikában használt anyagok hasonló adatai között. Kémiai és mechanikai stabilitása szintén kiváló ezeken a hőmérsékleteken is. Elektromos és termikus vezetési tulajdonságai 2000 K° környékén a fémekéhez hasonlóak és a hőmérséklettel csak kis mértékben változnak a hőtágulási együtthatóval együtt.

Még jobb adatokat kapunk akkor, ha nem a polikristályos grafit (elektrografit), hanem a grafit egy-

#### Híradástechnika XXXV. évfolyam 1984. 5. szám



1963-ban szerzett vegyész*mé*rnöki diplomáť Veszprémi Vequipari Egyetemen. Az Egycsült Izzóban laborvezetői beosztásban műszaki lesztési tevékenységet folytat. Kutatási szakterületei közé tartoznak a vákuumelektronikai termékek, elsősorban elektron-



sugárcső gyártástechnológiák. Aktív tevékenységet folytat mind a fémkikészítés, mind a lumi-neszkáló bevonatok előállítása terén. Jelenlegi pozíciójában a vákuum-elektronikai termékekhez használt üveg, fém és kerámia szerkezeti elemek fejlesztési problémáinak megoldásával foglalkozik.

kristály megfelelő adatait vesszük figyelembe. Ennek oka a grafit jellegzetes kristályszerkezete, és az ebből következő erős anizotrópia. Például a kilépési munka a hatszöges rácssíkokra merőlegesen nagyobb, mint velük párhuzamos irányban. Ugyanakkor az elektromos és hővezető-képesség több nagyságrenddel nagyobb a rácssíkok mentén, mint azokra merőlegesen.

Az ideális rácsbevonat tehát olyan grafitréteg, amely szerkezetére nézve egykristály, és hatszöges rácssíkjai a rács felületével párhuzamosak (2).

Felmerül az a kérdés: hogyan lehet olyan grafitréteget előállítani, amely legalábbis megközelíti az említett szerkezetet. A megfelelő módszer a pirolízis, amely az úgynevezett CVD (Chemical Vapour Deposition: gőzfázisból való kémiai lecsapatás) reakciók egy speciális fajtája. A CVD olyan kémiai reakciók gyűjtőneve, amely gázfázisú reagensek között játszódik le és az egyik termék egyensúlyi állapota a szilárd fázis a reakció hőmérsékletén. Ez a végtermék kicsapódik a reakciótér szilárd felületeire és ott bevonatot képez. Pirolízis esetén egyetlen reagensünk van, a reakció pedig ennek termikus bomlása. Pirolitikus szénréteg előállításához a kiinduló anyag valamely kis molekulasúlyú szénhidrogén pl. benzol. A bevonandó tárgyat magas hőmérsékletű vákuumtérbe tesszük, majd bevezetjük a gázfázisú szénhidrogént és a pirolízis során a tárgyon szénréteg képződik (3).

A keletkezett réteg kristályszerkezete és egyéb tulajdonságai erősen függenek a reakció paramétereitől, elsősorban a hőmérséklettől és pirolizált gáz nyomásától. Irodalmi adatok szerint kb. 10-103 Pa nyomásnál és 1000-2000 K° közötti hőmérsékleten olyan grafitszerkezetű réteg képződik, amely közel egykristály, síkjai közel párhuzamosak a lecsapatási felülettel.

A pirolízisnél alkalmazott módszerünk az ún. "forró fal" eljárás volt. Ennek lényege, hogy a reakció-

Beérkezett: 1983. X. 28.

tér falát kívülről fűtjük, így az egész reakciótérben egyenletes hőmérséklet van. A megfelelő vákuum alatt álló, a pirolízis hőmérsékletére felfűtött reakciótérbe bevezetjük a pirolizálandó gázt, amely esetünkben benzolgőz. A kívánt ideig tartó pirolízis után a maradék gázokat elszívjuk, majd a reakcióteret lehűtjük.

A pirolízishez használt berendezés egy REMIX által készített krakkoló kemence volt. Ennek legfontosabb része egy kb. 1,5 m hosszú vákuumzáró kerámiacső, amely középen kb. 2/3 hosszúságban fűtőtesttel és hőszigeteléssel van körülvéve, ez a reakciótér.

A cső két végét hőálló üveglap zárja el, mellettük egy-egy cső vezet a szivattyúhoz, illetve a benzolgőz bevezetéséhez. A vákuumot BP6 típusú forgószivattyú biztosítja. A berendezés csaprendszere olyan, hogy a reakciótér mindkét végén külön-külön és együttesen is szívható.

A benzolt tartalmazó tartály kapillárison keresztül csatlakoztatható a reakciótérhez, a benzolgőz mindkét végén bevezethető, így a benzolgőz áramlási iránya változtatható. A hőmérséklet fokozatkapcsolóval szabályozható, egy adott érték kb.  $\pm 10$  °C pontossággal tartható. A hőmérséklet az üveglapokon keresztül pirométerrel mérhető. A benzolgőz nyomását a reakciótérben különböző átmérőjű kapillárisok alkalmazásával lehetett beállítani.

## 2. Pirolízis anyaga

Pirolizáló berendezésünk rendszerének megfelelően krakkolásra olyan szénhidrogén-féleségek jöhetnek számításba, melyeknek gőztenziója elég magas ahhoz, hogy a gőz bomlásából származó és az alaphuzalra lerakódó szénréteg egy elfogadható technológiai időn belül megfelelő vastagságot és szerkezetet érjen el. A szénkiválás sebességét alulról meghatározza az a tény, hogy a szén könnyen bediffundál az alapfémbe. Ha a kiválás sebessége összevethető a diffúzió sebességével nem alakul ki bevonat a felületen, mert az összes anyag bediffundál az alapfémbe. A kiválás sebességét felülről korlátozza az a tény, hogy az egyszerre nagy tömegben kiváló szén egy laza szerkezetű bevonatot eredményez.

A fentiek figyelembevételével benzol, n heptán, alacsony forráspontú tiszta benzinpárlatok – extra-



Benzol Difenil Trifenit Difenil bifenil 1. ábra. A benzolbomlás reakciómechanizmusa

háló benzin, petroléter – toluol, izooktán, metilciklohexán, esetleg ezek keveréke jöhet számításba.

Bármilyen szénhidrogénből indulunk ki a kiválás oka, hogy a bomlás során a gőzfázisban szénre nézve egy túltelített rendszer jön létre. A bevonat képződése alapvetően négy egymást követő folyamat lefolyásából áll (4).

- 1. Gyökös láncreakció, melynek során a kiindulási szénhidrogén gyökökre disszociál majd nagy molekulájú polivegyületekké kapcsolódik öszsze.
- 2. További hidrogénleszakadással kialakulnak a kristálymagcsírák, melyek már fizikai felülettel rendelkeznek és nagy a páratlan elektronkoncentrációjuk (szabad vegyérték).
- 3. A kristálycsírák növekedése a gázfázisból nagy molekulák vagy molekularészek bekapcsolódásával egész addig, amíg annak felületén nem csökken jelentősen a szabad vegyérték koncentrációja.
- 4. Az agglomerátumoknak a lerakódása az alap felületén és továbbnövekedésük.

A végső szerkezet kialakulása szempontjából mindegyik lépcsőnek fontos szerepe van.

Kísérleteinket benzol hőbontásával végeztük. A benzol felhevítése során szénben egyre dúsuló vegyületekké alakul át, majd 750 °C felett teljes egészében szénre és hidrogénre bomlik szét. A reakció mechanizmusa a következő:

A kályha 750 °C alatti hőmérsékletű részén elsősorban a viszonylag stabil difenil keletkezik. Ez a kályha hideg részein halványsárga monoklin kristályok formájában rakódik le. A magasabb hőmérsékleten keletkező trifenil, trifenilbenzol, difenilbifenil képezik további dehidrogéneződéssel azokat a kristálymagcsírákat, amelyek növekedéséből a végső szerkezet kialakul.

## 3. Pirolízis hőfokának hatása

Állandó gőznyomás – 333 Pa – és adott idő – 90 perc – mellett vizsgáltuk a kialakult réteg vastagságát, szerkezetét, felületi és fajlagos ellenállását, tapadását, a huzal törékenységét a hőmérséklet függvényében.

# 3.1. A pirolízis hőfokának hatása a kialakult rétegvastagságra

<sup>1</sup>800–1100 °C között vizsgáltuk a kialakult rétegvastagságot a hőmérséklet függvényében (2. ábra). Az ábrából megállapítható, hogy 900 °C-ig a grafit kiválás nagyon lassú, csak egy igen vékony bevonat keletkezik. 900 °C felett meggyorsul a bevonatképződés és lineárisan növekszik a hőmérsékletnövekedéssel.

Ha megvizsgáljuk a szénkitermelés százalékát vagyis azt, hogy a kivált szén mennyisége az össz elpárolgott anyagban jelen levő szénhez képest menynyi, azt találjuk a fentiekhez hasonlóan (1. táblázat), hogy 800 °C hőmérsékleten a leválás mértéke viszonylag kicsi, magasabb hőmérsékleten azonban gyorsan növekszik és 1100 °C-on 95%-ot ér el.



2. ábra. Rétegyastagság a hőfok függvényében

1. táblázat

A szénkiválás százaléka a hőfok függvényében

| Pirolízis hőfoka<br>(°C) | Elpárolgott benzol<br>(ml) | Kivált szén<br>(%) |
|--------------------------|----------------------------|--------------------|
| 800                      | 7,0                        | 0,3                |
| 900                      | 7,4                        | 0,6                |
| 1000                     | 7,0                        | 52,0               |
| 1100                     | 8,4                        | 95,0               |

### 3.2. A pirolízis hőfokának hatása a kialakult réteg szerkezetére

Az elektronmikroszkópos felvételek segítségével vizsgáltuk a kialakult réteg szerkezetét. A felvételekből az állapítható meg, hogy 800–900 °C-on csak egy nagyon vékony grafit bevonat keletkezik a felületen, inkább a felület átkarbidizálódásáról van szó. Az a karbidréteg jól tapad az alapfémhez, de rideg. A huzal deformációjakor erősen összerepedezik. A hőmérséklet növekedésekor egy vastagabb és tömörebb grafitréteg alakul ki a felületen (3–4. ábra). A felvételekből látható, hogy a keletkező kristálymagcsírák nem minden esetben rendelkeznek egyforma akciókörzettel. Ennek eredménye egy-egy kristály átlagtól eltérő növekedése. Az is látható, hogy a kialakult bevonat erősen követi az alapfém – esetünkben a molibdén huzal — felületi egyenetlenségeit, huzalosságát.

### 3.3. Pirolízis hőfokának hatása a kialakult bevonat ellenállásának mértékére

A rács működése szempontjából nagyon lényeges, hogy a bevonat kis ellenállású, jó vezetőképességű legyen. A felületi ellenállás méréséhez egy 2,4 mm átmérőjű 25 mm hosszúságú kerámia rudacskát használtunk. A bevonat négyzetes és fajlagos ellenállását a

$$R_{\Box} = R \cdot \frac{s}{I},$$

illetve

$$\varrho = \frac{R \cdot d \cdot s}{l}$$

összefüggésből számoltuk, ahol

R = a test ellenállása,

s = a rúd kerülete,

l=a rúd hosszúsága, amelyen az ellenállást mértük, d=a rétegvastagság.

A mért, illetve számított értékeket a 2. számú táblázat tartalmazza.

2. táblázat

Ellenállás a hőfok függvényében

| Hőfok  | Elle         | állás           |
|--------|--------------|-----------------|
| •0     | Felületi (Ω) | Fajlagos (Ω·cm) |
| 800    | 2250         | 0,045           |
| 900    | 53           | 0,0026          |
| . 1000 | 2,4          | 0,0018          |
| 1100   | 1,4          | 0,0010          |

#### 3.4. A pirolízis hőfokának hatása a kialakult réteg tapadására

A pirolízissel kialakított grafitréteg felhasználhatóságát döntő mértékben meghatározza a rétegtapadása. A tapadás mérésére egy berendezést készítettünk. Működésének lényege, hogy a bevonattal ellá-



3. ábra. 1000 °C-on kialakult réteg



4. ábra. 1100 °C-on kialakult réteg

tott rácshuzalt egy változtatható terhelésű ék alatt egyenletes sebességgel elhúzzuk és vizsgáljuk az erő nagyságát, ami ahhoz kell, hogy a réteg megsérüljön, illetve az alaphuzalról leváljon.

|   |                     | 3.              | táblázat |
|---|---------------------|-----------------|----------|
| a | Tapa<br>hőmérséklet | dás<br>függvény | yében    |
|   | 1                   |                 |          |

| P <b>irolízis</b> hőfoka   | Tapadás           |
|----------------------------|-------------------|
| (°C)                       | (g)               |
| 800<br>900<br>1000<br>1100 | 130<br>180<br>250 |

A 3. táblázat eredményeiben látható, hogy 800 °Con levált nagyon vékony réteg tapadásértékét meghatározni nagyon nehéz. A kialakult réteg nem válik le a felületről. A hőfok növekedésével a tapadás nő.

A mért értékek a kísérletek első szakaszában nagyon nagy szórást mutattak. Megállapítottuk, hogy ennek magyarázata a hűlési sebességek különbözősége. Gyors lehűlés esetén a kialakult réteg anizotrópiája miatt a rétegben feszültségek, repedések keletkeznek. Ha gondosan ügyelünk arra, hogy a le-



5. ábra. Kristálymagcsírák



6. ábra. Kristálymagcsírák összenövése 5 perc krakkolás után

hűlési sebesség a 2 °C/perc sebességet ne lépje túl – különösen a 800-1000 °C közötti tartományban – jól reprodukálható eredményeket kapunk.

4. A pirolízis idejének hatása a kialakult rétegvastagságra

Az alapfémre rárakódó bevonat vastagsága az idő függvényében, mint várható, nő. A kezdetben kialakuló kristálymagcsírák (5. ábra) előbb összefüggő felületté nőnek össze (6. ábra), majd megkezdődik a réteg növekedése.

 A pirolizált gáz nyomásának hatása a kialakult réteg szerkezetére, vastagságára és ellenállására

A pirolizáló kemencében kialakult nyomásviszonyokat meghatározza az anyag illékonysága, a felület nagysága amelyen az anyag párolog, a vákuumot biztosító szivattyúk szívósebessége a kapilláris cső hossza és átmérője, amelyen keresztül a gőz a reakciótérbe kerül. A kapilláris átmérőjének változtatásával – az egyéb tényezők változatlanul hagyása mellett – változtattuk a pirolízisre kerülő gáz nyomását. Figyeltük a réteg szerkezetének, a réteg vastagságá-



7. ábra. Kialakult réteg 133 Pa gőznyomás mellett



8. ábra. Kialakult réteg 533 Pa gőznyomás mellett

nak változását a nyomás függvényében. Az elektronmikroszkópos felvételekből (7--8. ábra) megállapítható, hogy a kialakult réteg alacsony nyomáson simább, magasabb nyomáson durvább felületű. Az azonos idő alatt kivált réteg vastagsága a nyomás növekedésével nő (9. ábra). A nyomás további növekedésének határt szab az erős koromképződés, mely eleinte a kályha hidegebb részein jelentkezik.



9. ábra. Rétegvastagság a nyomás függvényében

4. táblázat

Fajlagos ellenállás a gőznyomás függvényében

| Gőznyomás | Elle         | nállás          |
|-----------|--------------|-----------------|
| (Pa)      | Felületi (Ω) | Fajlagos (Ω·cm) |
| 133       | 2,8          | 0,0022          |
| 333       | 1,4          | 0,0010          |
| 533       | 2,3          | 0,0079          |

Ha megvizsgáljuk a felületi és fajlagos ellenállást a nyomás függvényében (4. táblázat) azt tapasztaljuk, hogy alacsony nyomás mellett készült réteg ellenállása nagy, nyilván túl vékony a réteg a jó vezetés kialakításához. Nagy nyomásnál a laza szerkezet rontja a vezetést. Legideálisabbnak, legkisebb ellenállásúnak a 333 Pa nyomás mellett készült rétegek bizonyultak.

## 6. Sűrűségvizsgálat

Annak eldöntésére, hogy kísérleteink eredményeként kapott szénbevonat mennyire tekinthető grafit egykristálynak megmértük az alaphuzalról lekapart grafitréteg sűrűséget (5. táblázat). Ha figyelembe

5. táblázat

Bevonatsűrűség a hőfok függvényében

| Hőfok<br>(°C)  | Bevonatsűrűség<br>(g/cm³) |
|----------------|---------------------------|
|                |                           |
| 800            | 2,0540                    |
| s ≦ <b>900</b> | 2,0587                    |
| 1000           | 2,0654                    |
| 1100           | 2.0692                    |

vesszük, hogy a grafit egykristály sűrűsége 2,26 g/cm<sup>3</sup> az állapíthatjuk meg, hogy bár a hőfok növelésével a bevonat sűrűsége nő – az adott berendezés adta lehetőségen belül – még nem érjük el az ideális egykristály szerkezetet.



10. ábra. A felületi réteg összetétele

#### 7. Röntgenvizsgálat

A kialakult grafitréteg szerkezetének megismerésére, annak eldöntésére, hogy a kialakult bevonat mennyire tekinthető grafitnak röntgenvizsgálatokat is végeztünk. A rácshuzal felületének röntgendiffrakciós vizsgálatai azt mutatják (10. ábra) hogy 900 °C-ig a rácshuzal felületén kiváló szén nem képez bevonatot. A kivált szén reakcióba lép a magfém anyagával teljes egészében molibdén-karbiddá alakulva. E hőmérséklet fölött megjelenik a bevonatban a szén is. Kezdetben nagyon diffúz kristályformában, majd egyre jobban jelentkezik a grafitfázis.

A nyomás növekedésével a bevonatban – mint arról a bevonat szabadszemmel való vizsgálatánál is meggyőződhetünk, csökken a grafitfázis mennyisége.

#### 8. Rácshőmérséklet-mérés

A grafitbevonat rácsemisszió csökkentő hatása a grafit nagy kilépési munkája mellett azzal is magyarázható, hogy a grafit mint fekete test jó hősugárzó. A grafittal bevont rács így alacsonyabb hőmérsékletű, kevésbé emittál. A grafit rácshőmérsékletet befolyásoló hatásának kimérésére két csövet készítettünk, melynek rácsaira hőelemet hegesztettünk. Egyik rács bevont grafittal a másik nem. A mért eredményeket a 11. ábra szemlélteti, ahol a katódhőmérséklet függvényében néztük a rács hőmérsékletét. Megállapítható a grafitozott rács átlag 50–-100 °C-kal alacsonyabb hőmérsékletű, mint a bevonat nélküli.



12. ábra. Pirograíit rácshuzal keresztmetszeti kép

### 9. Huzaltörékenység

A grafitréteg kialakulását egy nagyon kellemetlen mellékjelenség kíséri. A rácshuzal felületén kialakult grafitrétegből szén diffundál be a magfémbe (12. ábra), annak anyagával reakcióba lép molibdén-karbid keletkezik. A jelenség több szempontból is káros. A molibdén hexagonális rácsa térbencentrált köbös molibdén-karbiddá alakul, az anyag törékennyé válik. A molibdén-karbiddá történő átalakulás a hőmérséklet növelésével nő, az anyag törékenysége fokozódik. A törékenység megállapítására két módszert dolgoztunk ki. Egyrészt felhasználtuk az elkészített tapadásmérőt törékenységvizsgálatra. Ehhez csak a tapadásmérő ék helyzetét kellett úgy beállítani, hogy a befogott huzalt alátámasztatlan részen nyomja. Az alátámasztatlan rész hossza 10 mm volt. A mozgatható súly segítségével a terhelést tetszés szerint változtatva figyeltük mennyi az a súly, mikor a huzal letörése bekövetkezik. A másik vizsgálati módszerként az adócsövekre egyébként is szokásos rázásvizsgálatokat alkalmaztuk. A vizsgálandó rácshuzaldarabot két tartó közé befogtuk rázógépen, megkerestük a rezonancia frekvenciáját, majd ezen a frekvencián különböző gyorsulás mellett vizsgáltuk mikor következik be a fonal törése (6. táblázat).

A grafit magfémbe való bediffundálásának mértéke függ az időtől is. Hosszú idő alatt több a bediffundált szén. Az alapfém nagyobb arányban alakul át karbiddá, a törékenység nő. 6. táblázat

Törékenység a hőfok függvényében

| Нбfok<br>(°С) | Törékenység<br>(g) | Rázási próba<br>(G) |
|---------------|--------------------|---------------------|
| 800           | hajlik             | 12                  |
| 900           | hajlik             | 10—11               |
| 1000          | 54                 | 6—7                 |
| 1100          | 45                 | 5-6                 |

7. táblázat

Törékenység az idő függvényében

| Pirolízis ideje<br>(perc) | Törékenység<br>(g) |
|---------------------------|--------------------|
| <br>                      |                    |
| 15                        | hajlik             |
| 30                        | 60                 |
| 60                        | 52                 |
| <br>                      | 45                 |

Adott hőfok mellett (1100 °C) az idő függvényében a törékenység növekedését mutatja a 7. táblázat. A táblázat adatai azt mutatják, hogy a pirolízis idejét célszerű minél rövidebbre választani. Ennek természetesen határt szab az elérendő rétegvastagság.

#### Az alapfém állapotának hatása a bevonat tulajdonságaira

A bevonat tapadásának növelésére, a huzal tűrékenységének csökkentésére felületi kezeléseket eszközöltünk. A felület érdességének növelését és ezen keresztül a bevonat tapadásának növelését célozták a különböző maratási eljárások. A felületet krómsavval, lúgos peroxiddal, káliumferrocianiddal, különböző töménységű és hőfokú salétromsavval kezeltük. A legerősebb érdesítést forró 1:1 arányban hígított salétromsavval értük el. Ennek hatására a felület állapota lényegesen megváltozott, de a réteg tapadása nem javult.



13. ábra. Platinával bevont molibdénhuzal



14. ábra. 1100 °C-on kezelt ipszilon huzal



16. ábra. Molibdén íelületre rászinterelt cirkonszemcsék



15. ábra. Grafitozott ipszilon huzal



17. ábra. Cirkonozott, grafitozott rácsborda

## 10.1. Felület bevonása platinával

A rácsemisszió csökkentése érdekében használnak platinával bevont molibdén huzalt az úgynevezett ipszilon huzalt. Felmerült az a gondolat, nem csökkenthető-e tovább a rácsemisszió, ha a platinára még egy grafitréteget is felviszünk. Ugyanakkor a platinabevonat megakadályozná a szén bediffundálását az alapfémbe, megvédve ezáltal a törékenységtől. Ha a 13. ábrán látható platinával bevont felületű molibdén huzalt 1100 °C-on hőkezeljük a sima platina felület átalakul jellegzetesen szivacsos szerkezetűvé (14. ábra). Az így kialakult szivacsos szerkezeten nagy sebességgel indul meg a grafitkiválás, egy erősen érdes felület jön létre (15. ábra).

Ha megvizsgáljuk a bevont huzal keresztmetszetét jól megkülönböztethetjük az alapfémet, a hőkezelés hatására szivacsossá vált platinabevonatot és rajta a grafitréteget. Sajnos az is látszik, hogy a grafitrétegben repedések vannak, amik végül is azt eredményezik, hogy érdesebb felület ellenére a grafitréteg tapadása nem mindig megfelelő.

Ha a grafit növekedési sebességét összehasonlítjuk a sima molibdén felületen bekövetkezővel (2. ábra) azt állapíthatjuk meg, hogy a rétegvastagság itt lényegesen gyorsabban nő.

## 10.2. Cirkonbevonai

A cirkon adócsőgyártásban szintén alkalmazott bevonatképző anyag. Megvizsgáltuk mennyire lenne képes mint rácsbevonat a molibdén magfém és a pirografit közötti elválasztó illetőleg tapadást elősegítő közbenső réteg szerepét betölteni. Az elektroforetikusan felvitt cirkonréteg 1250 °C-os nagyvákuumos rászinterelés hatására a felülethez jól tapadó érdes bevonatot ad (16. ábra). A rá leválasztott grafitbevonat (17. ábra) jól tapad hozzá, minden szempontból megfelelő bevonatot eredményez. Bár a grafitbevonat keresztmetszetében itt is találhatók repedések a cirkonbevonat jó tapadása és diffúzszerkezete biztosítja a grafit megfelelő tapadását.

## 11. Összefoglalás: esőmérési eredmények

Az eddig lefolytatott kísérletek alapján a legmegfelelőbb rácsbevonat az alábbi technológiai lépések során állítható elő:

- 1. Rácstisztítás: zsírtalanítás, lúgos hidrogénperoxidos maratás.
- 2. Vákuumizzítás: 1300 °C 10<sup>-4</sup> Pa 30 perc.

- 3. Elektroforetikus cirkonbevonat (vastagsága  $12\pm 2 \ \mu m$ .)
- 4. Cirkon beszinterelés 1250 °C 10<sup>-4</sup> Pa 30 perc.
- 5. Pirografit bevonatkészítés. Benzol atmoszféra 333 Pa 1100° 90 perc.

| 8. táblázai<br>Különböző bevonatú rácsok<br>rácsemissziója |                                                                                    |
|------------------------------------------------------------|------------------------------------------------------------------------------------|
| Bevonat anyaga                                             | Rácsemisszió<br>(µA)                                                               |
| Platina<br>Tantál szilicid<br>Cirkon karbid<br>Pirografjt  | $\begin{array}{c c} 700 - 1000 \\ 500 - 1000 \\ 200 - 300 \\ 50 - 150 \end{array}$ |

Az így felületkezelt rácsokkal készült csövek igazolták az eddigi kísérletek eredményeit. A velük készült csövek kiváló rácsemissziós tulajdonságokat mutattak (8. táblázat). A csőkísérletek 3J10K típusú generátorcsőben készültek, maximális rácsterhelés (250 W) mellett.

A táblázat adataiból látható, hogy az alkalmazott bevonatok közül a pirografit bevonat adja a legkisebb rácsemissziót, legalkalmasabb arra, hogy nagy teljesítményű adó és generátorcsövek rácsbevonó anyaga legyen.

### IRODALOM

- [1] Balik: Pirolitikus grafit az elektroncsövek új gyártási anyaga. Slaboproudy Obzor 1977. 38 k. 12. sz.
- [2] Knippenberg, W. F.-Lersmacher, B.-Lydtin, H.: Pirolitikus grafittermékek. Philips Technische Rundschau 37. k. 1977. 8. sz.
- [3] Linke, Koizlik, Nickel: Pirografit leválasztás gázfázisból. Kernforschungsanlage, Jülich, Institut für Raktorwerkstoffe 1977.
- [4] Morozova: A koromképződés mechanizmusa a szénhidrogéneknél. Dokladü Akademii Nauk 1975.
  6. sz.