PŐDŐR BÁLINT – BALÁZS JÁNOS MTA Műszaki Fizikai Kutató Intézete

Félvezető kadmiumszulfid egykristályok elektromos tulajdonságai

ETO 546.48'221-162:548.55:537.311.322

A kadmiumszulfid (CdS) széles tilossávú félvezető, az A^{ll}B^{VI} típusú félvezető család egyik legjellegzetesebb s egyben talán legismertebb tagja. Eddig elsősorban optikai, lumineszcens, és fotovezetésí tulajdonságait tanulmányozták behatóbban, elsősorban nagy fajlagos ellenállású ($\rho \ge 100$ ohmcm) kristályokban [1, 2]. E tulajdonságai alapján alkalmazták egykristály, polikristály vagy kristályos por formájában mint fotovezető, napelem, lumineszcens por stb. alapanyagát [1]. Nemrég kerültek előtérbe a CdS akusztoelektromos tulajdonságai, amelyek akusztoelektromos félvezető eszközök és akusztikus erősítők konstrukcióját teszik lehetővé [1]. Az utóbbi években ugyancsak az érdeklődés előterébe kerültek az alacsonyabb fajlagos ellenállású (g < 100 ohmcm) kristályok ún. "klasszikus" félvezető tulajdonságainak vizsgálata is.

Jelen dolgozatban először röviden összefoglaljuka CdS egykristályok fontosabb fizikai és félvezető tulajdonságait, utána pedig ismertetjük a félvezető egykristályok egy lehetséges, laboratóriumunkban alkalmazott előállítási módját, majd az így nyert félvezető, alacsony fajlagos ellenállású CdS kristályok elektromos tulajdonságait.

1. A CdS egykristályok fizikai tulajdönságai

A CdS egykristályok általában a hexagonális (wurtzit) módosulatban állíthatók elő [1, 2], köbös módosulat igen ritka [3]. Az irodalomban található vizsgálati adatok a hexagonális kristályokra vonatkoznak.

A wurtzit szerkezet két egymásba illesztett hexagonális rácsból áll. Az egyik alrácsot a kationok (Cd), a másikat az anionok alkotják (1. 1. ábra).

A rácsállandókat a többi fontosabb fizikai és elektromos paraméterrel együtt az 1. táblázat foglalja össze. A két alrács egymáshoz képest 3/8c távolságra van eltolva a c tengely mentén (1. ábra). Az ideális wurtzit-rácsban (amelyre jellemző, hogy c/a = $\sqrt{8/3}$ = =1,633 [2], v. ö. az 1. táblázat szerinti mérési adattal) a legközelebbi szomszédok koordinációja tetraéderes ugyanúgy, mint a vele rokon szfalerit- és gyémánt-rácsban. Azaz minden Cd atomot négy S atom vesz körül és viszont (1. ábra). Sőt, a második szomszédok elhelyezkedése is megfelel még a szfalerit, illetve a gyémánt rácsnak, az eltérések csupán a harmadik szomszédoknál kezdődnek. A rácsszerkezet ilyen alakulása révén a wurtzit-rácsú kristályok elektronszerkezete szoros analógiát mutat a szfalerit-, illetve a gyémánt-rácsú kristályokéval, így érthető

az analóg félvezető tulajdonságok kialakulása e kristályoknál is.

A vezetési sáv abszolút minimuma és a valencia sáv abszolút maximuma a Brilloum zóna közepén a

1. ábra. A CdS kristályszerkezete, a wurtzit-rács

CDS egykristályok fizikai tulajdonságai

1. táblázat

Tulajdonság	Számérték	Irodalom, megjegyzések		
Rácsállandó (10 ⁻⁸ cm)c	6,72	[1, 2] c/a = 1,624		
a	4,14			
Olvadáspont (°C)	1475	[2]		
Minimális nyomás olvadásponton (atm)	3,8	[2]		
Sűrűség (g/cm ⁻³)	4,83	[2]		
Vickers mikrokeménység (kpond/mm²)	50—70*			
Tiltott sáv szélessége (eV) A	2,583	T≦15K [2, 4]		
В	2,598			
C	2,661			
Tiltott sáv szélességének hőmérsékleti egy. (eV/K)	$-5,2 \times 10^{-4}$	[1]		
Elektronok effektív tömege	0,18—			
Lyukak effektív tömege	0,22** 	[1, 2, 3, 6, 7] nincs megbízható adat		
Elektronok mozgékony- sága 300K (cm²/Vs)	300-350***	[1, 2]		
Lyukak mozgékonysága 300K (cm²/Vs)	25-30	[1, 2, 12, 13]		
	2 · · · ·			

* Lendvay Ö. mérései, ** Különböző módszerekkel mérve. *** Irodalmi és saját mérési adatok szerint.

Beérkezett: 1972. XI. 30.

 2. ábra. A CdS sávszerkezete a vezetési sáv abszolút minimuma és a valenciasáv abszolút maximuma (k = 0) környezetében

k=0 pontban van (l. 2. ábra), tehát a sávélnek megfelelő optikai átmenetek direktek (ugyanúgy, mint pl. GaAs esetében). A wurtzit-rácsnak a szfaleritrácstól némileg eltérő szimmetriatulajdonságai miatt a szfalerit-, illetve a gyémánt-rácsban a k=0 pontban elfajult valencia sáv (könnyű és nehéz lyukak sávja) felhasad, s így a spin-pálya kölcsönhatás miatt amúgy is fennálló felhasadás miatt három valenciasáv (A, B és C a 2. ábrán) alakul ki [2]. A B és C sáv maximuma a legfelső valencia-sávtól 0,015, illetve 0,08 eV távolságra van (1. táblázat). A sávszerkezetre és a sávélekre vonatkozó ismereteink elsősorban optikai mérésekből származnak [1, 2, 4].

A vezetési sáv minimumának alakja és az elektronok effektív tömege elég pontosan ismert. A minimum enyhén lapított forgási ellipszoid alakú, az effektív tömeg anizotrópiája legfeljebb 5–10% [1, 2]. Az elektron effektív tömeg legvalószínűbb értéke a legújabb mérések szerint 0,18–0,19 [5, 6, 7].

A lyukak effektív tömegére vonatkozóan csak igen kevés és bizonytalan adat áll rendelkezésre. A valencia-sávokban valószínűleg jóval nagyobb az anizotrópia, mint a vezetési sávban [1, 2]. Az A és Bsávokban a lyukak effektív tömegének nagysága kb. 1-3 [2, 8].

A CdS egykristályokban (s egyben az $A^{II}B^{VI}$ típusú kristályokban) elektromos (és optikai, valamint lumineszcens) aktivitás szempontjából a legfontosabb szennyezők a periódusos rendszer I, III és VII oszlopbeli elemei [1, 2]. A III oszlopbeli elemek (Al, Ga, In) a kationt (Cd) helyettesítik, a VII oszlopbeli elemek (F, Cl, Br, J) pedig az aniont (S) helyettesítik és sekély hidrogénszerű donorként viselkednek, melyek ionizációs energiája kb. 30 meV [2, 9, 10]. A legfontosabb akceptorok az Ib oszlop elemei (Cu, Ag, Au) [2]. Ezen akceptorok mélyenfekvő szinteket hoznak létre és fontos szerepük van a CdS optikai lumineszcens és fotovezetési tulajdonságainak meghatározásában.

Sokszor azonban még a szennyezőknél is fontosabb szerepet játszanak a sztöchiometriai eltérésekből eredő ponthibák, azaz a Cd és S vakanciák (rácslyukak) és a Cd és S intersticiálisok (rácsközi atomok), továbbá ezek bonyolultabb komplexei [1, 2, 9]. Az S vakancia és a Cd intersticiális atom donor szinteket hoz létre, a Cd vakancia és az S intersticiális atom pedig akceptorként viselkedik. Az így kialakult energiaszintek egy része sekély (mint pl. az S vakancia), másik része mély (mint pl. a Cd vakancia). Annak ellenére hogy nagy mennyiségű kísérleti adat áll rendelkezésre, az irodalomban ezen intrinsic ponthibákra vonatkozóan, még távolról sem alakult ki egységes és végleges kép a különböző ponthibák és hibakomplexek jellegzetes aktivációs energiáira vonatkozóan [1, 2, 11].

A különböző ponthibák (minden valószínűség szerint a Cd fölöslegből eredő S vakanciák vagy Cd intersticiális atomok) állandó jelenléte, esetleg maradék szennyezőkkel való kombinációban okozzák azt, hogy a CdS-ot eddig egyensúlyi folyamattal csak ntípusú kis ellenállású vagy nagy ellenállású fotovezető formában állították elő. Az elektronok mozgékonysága Hali-effektus mérések révén elég pontosan ismert (l. 1. táblázat), de a lyukak mozgékonyságát csak mint külső behatás révén generált kisebbségi töltéshordozók mozgékonyságát mérték meg, nem túl nagy pontossággal [12, 13].

2. A CdS egykristályok előállítása

A vizsgált kristályokat zárt rendszerben, szublimációs módszerrel egy E. Kaldis [14] által először leírt eljáráshoz hasonlóan növesztettük.* A kiindulási anyag "lumineszcens tisztaságú" CdS por volt. A kristálynövesztés előtt a következő előkezeléseket alkalmaztuk. A kadmiumszulfid port száraz H_2S (kénhidrogén) atmoszférában hevítettük, esetenként különböző hőmérsékleteken 600 és 1100 °C között. A kísérletek egy részénél (kb. a növesztések felénél) az ampulla lezárása előtt vákuumhőkezelést is alkalmaztunk, 2–300 °C hőmérsékleten.

Egy kúpos végződésű kvarc ampullába kb. 4 g kadmiumszulfid port helyeztünk, és az ampullát 10^{-5} torr vákuum alatt lezártuk. A kúpos csúcshoz egy 3 mm átmérőjű kvarcrúd csatlakozott, a kristályosodási hő elvezetése céljából. A 3. ábrán látható módon az ampullát egy függőleges ellenállásfűtésű kályha homogén hőzónájába helyeztük, melynek hőmérséklete 1180 °C volt. Ezután kb. 1–2 mm/h sebességgel keresztülhúztuk az ampullát egy kb. 5– 10° C/cm gradiensű hőzónán. Kb. 50 óra múlva, miután az ampulla csúcsa elérte a kályha 1130 °C-os pontját, az ampulla húzását abbahagytuk, és az egész rendszert 50 °C/óra hűtési sebességgel lehűtöttük (l. 3. ábra).

Az előkezelés körülményeinek változásai (a CdS por izzítási hőmérséklete, illetve az ampulla lezárása előtti vákuumhőkezelés) megváltoztatták a növesztett kristályok morfológiáját és tulajdonságait (szín, optikai abszorpció, elektromos tulajdonságok) [15]. Ha a CdS por 900 °C-nál magasabb hőmérsékleten volt kiizzítva, és a vákuum hőkezelést is végrehajtottuk, a kúpos csúcsban nőtt az egykristály. Ellenkező esetben csak részleges transzportot figyeltünk meg. Ugyanakkor az ampulla fenekén is nőtt egy

* A kristályokat Hársy Miklós, az Intézet tudományos munkatársa növesztette. Részletekre vonatkozóan I. [15].

sötétebb színű CdS egykristály. A kúpos végen nőtt kristályoknál a hexagonális tengely kb. $10-20^{\circ}$ -os szöget zárt be a növesztési iránnyal.

A CdS előkezelésétől függően a növesztett kristályok különböző sztöchiometriai eltéréseket mutattak. A vákuumbeli hőkezelés hatására a kiindulási anyagból S párolgott el. A növesztési folyamat során a sztöchiometriától való eltérés tovább nőtt [15]. A nyert kristályokba az előkezelés és a növesztés kö-

rülményeitől függően különböző mennyiségű Cd felesleg épült be.

A kristályok elektromos tulajdonságai határozott korrelációt mutattak az előkezelés körülményeivel. Az előizzítás hőmérsékletének növelésével a szabad elektronkoncentráció és a donorkoncentráció és a vezetőképesség monoton nőtt [15, 16]. A kristályok fajlagos ellenállása 10^{-2} és 10 ohmcm között változott.

3. Mérési technika és mérési eredmények

A növesztett egykristályokból kb. $4 \times 3 \times 0,3$ mm méretű lemezeket vágtunk ki. Kémiai maratás után elektromos kontaktusokat készítettünk indiumnak 10^{-5} torr vákuumban való felpárologtatásával és 500 °C hőmérsékleten végzett beötvözésével. A kontaktusok mérete kb. 300 μ volt. A méréseket a Van der Pauw eljárás szerint végeztük a 80–400 °K hőmérsékleti tartományban. A mérések becsült hibája max. 10%, főleg a minták kis méretéből kifolyólag.

Több mintán végeztük el az elektron-koncentráció, fajlagos vezetőképesség és elektron-mozgékonyság mérését a hőmérséklet függvényében. Az általunk növesztett kristályokon kívül több olyan mintát is mértünk, melyeket egy ultra nagytisztaságú, Eagle-Picher Co. gyártmányú kristályból vágtunk ki. A minták szobahőmérsékleten mért fajlagos ellenállása a 0,01 és 10 ohmcm között volt, az ennek megfelelő töltéshordozó-koncentrációk 4×10^{15} cm⁻³ és 3×10^{18} cm⁻³ között, a mozgékonyságok pedig 315 cm²/Vs és 120 cm²/Vs között voltak. A minták elektromos adatait a 2. táblázat foglalja össze.

A következő ábrákon bemutatjuk a tipikus mérési eredményeinket. A 4. ábrán látható fajlagos vezetőképesség-hőmérséklet görbék háromféle jellegzetes viselkedést mutatnak. A legnagyobb vezetőképességű minták esetében a vezetőképesség közelítőleg független a hőmérséklettől, mely a nagy elektronkoncentráció miatti töltéshordozó-degenerációra utal (100°Ken a Fermi szint $\zeta = +4$). Az összes többi minta esetében, kivéve az EP1 jelűt, a vezetőképesség alacsony hőmérsékleteken csökkenő tendenciát mutat. Ez egyrészt a szennyezők deionizációjának, másrészt a részleges donor-akceptor kompenzációnak a következménye.

Az 5. ábrán látható Hali-állandó görbék is ennek megfelelően csoportosíthatók. A legmagasabb vezetőképességű minta Hali-állandója a legalacsonyabb, és független a hőmérséklettől. A többi minta esetében sekély donorszint jelenlétére lehet következtetni. Míg ez EP1 minta esetében a Hali-állandó szobahőmérsékleten telítést mutat, a többi minta még itt

2. táblázat

Minta száma	n ₃₀₀ cm ⁻³	μ # 200 cm²/Vs	Na cm⁻³	N _a cm ^{−3}	$K_n = \frac{N_a}{N_d}$	Ea meV	$\frac{\mathbf{m}^{x}}{\mathbf{m}}$
1	$2,9 \times 10^{18}$	165	(6-8)×10 ¹⁸	$(3-5) \times 10^{18*}$	0,5-0,7	0	0,2**
2	$4,1 \times 10^{17}$	270	$7,2 imes 10^{17}$	$1,5 imes 10^{17}$	0,21	4,3	0,27*
3	$5,2 imes 10^{17}$	270	$9,0 imes 10^{17}$	$1,5 imes 10^{17}$	0,17	7,1	0,31
4	$1,75 imes 10^{17}$	120	$3,3 imes 10^{17}$	$1,0 imes 10^{17}$	0,30	13,2	0,25
5	$1,5 imes 10^{17}$	170	$3,1 imes 10^{17}$	$8,0 imes 10^{16}$	0,26	7,5	0,13
6	9,3×10 ¹⁶	200	$1,6 imes 10^{17}$	$5,0 imes 10^{16}$	0,32	15,8	0,24
7	$7,5 imes 10^{16}$	245	$1,4 imes 10^{17}$	5,0×10 ¹⁶	0,36	15,5	0,25
8	$4,9 \times 10^{16}$	125	$1,1 imes 10^{17}$	$5,0 imes 10^{16}$	0,46	13,6	0,20
9	$3,1 imes 10^{16}$	170	$4,6 imes 10^{16}$	$1,0 \times 10^{16}$	0,22	26,5	0,15
10	$7,0 \times 10^{15}$	315	8,8×10 ¹⁶	8,0×10 ¹⁶	0,91	10,4	0,19
EP 1	$3,5 imes 10^{15}$	310	$4,5 imes 10^{15***}$	$1,0 imes 10^{15***}$	0,22	_	
	1		l · · · ·]	1	1

* Alacsony hőmérsékleten mért mozgékonyság értékéből becsülve.

** Feltételezett érték.

*** Közelítő adatok.

4. ábra. Fajlagos vezetőképesség a reciprok hőmérséklet függvényében. Jelölések, mint a 2. táblázatban

^{5.} ábra. Hali-állandó a reciprok hőmérséklet függvényében

sem éri el a telítést, részben az erősebb kompenzáció, részben a donorok nagyobb sűrűsége miatt.

A mozgékonyságnak a hőmérséklettől való függése (l. 6. ábra) már bonyolultabb. A legalacsonyabb töltéshordozó-koncentrációjú két minta, 10 és EP1 mutatja a legnagyobb mozgékonyságot az egész vizsgált hőmérséklet-tartományban. A 10, 7, 5, 2. és 1. számú minták növekvő mértékben mutatják a szennyezési szórás hatását, elsősorban alacsony hőmérsékleten. Ugyanakkor a minták egy másik csoportja (a 6. ábrán a 6, 8, 9. számú minták) esetében a szobahőmérsékleti mozgékonyság abnormálisan alacsony, és a mozgékonyság görbék egymással közel párhuzamosan haladnak.

4. A mérési eredmények analízise

A kísérleti eredmények analízisét két problémakörre koncentráltuk. Az első ezek közül a domináns donorok ionizációs energiájának, és az ionizációs energiának a donor koncentrációtól való függésének a meghatározása, továbbá a donorok természetének vizsgálata volt. A második pedig a töltéshordozók szórási mechanizmusának vizsgálata volt, azaz a domináns rácsszórási mechanizmus felderítése, valamint az ionizált és semleges szórási centrumok hatásának vizsgálata [16].

Egysávbeli vezetést feltételezve az elektronkoncentrációt az $n=r/eR_H$ összefüggésből lehet meghatározni. A szórási kép bonyolultsága miatt r=1értéket tételeztünk fel, mely azonban nem okoz lényeges hibát [16].

6. ábra. Hali-mozgékonyság a hőmérséklet függvényében

A Hali-együtthatók hőmérsékletfüggéséből kapott töltéshordozó koncentráció görbék analízisénél a jól ismert egy donor-egy akceptor modellt használtuk.

$$\frac{\mathbf{n}(n+N_a)}{(N_d-N_a-\mathbf{n})N_c'} = g\left(\frac{\mathbf{m}^{\mathbf{x}}}{\mathbf{m}}\right)^{3/2} \exp\left(-\frac{E_d}{kT}\right)$$

ahol $N'_c = 2(2\pi m kT/h^2)^{s_a}$, m a szabad elektrontömeg, g a donorszintek elfajulási tényezője, n, N_d , és N_a a vezetési elektronok, a donorok és az akceptorok koncentrációja, és E_d a donorok termikus ionizációs energiája. A fenti egyenletnek a mérési adatokhoz való illesztésével 4 paraméter határozható meg: N_d ,

 N_a, E_d és $g\left(\frac{m^x}{m}\right)^{3/2}$. A paraméterek meghatározásánál az irodalomból ismert "próbálgatásos" görbeillesztési módszert alkalmaztuk. Ezen eljárás szerint N_a és $N_d - N_a$ értékeit felvéve, azokat addig változtatjuk, míg az egyenlet bal oldalát a reciprok hőmérséklet függvényében féllogaritmikus léptékben ábrázolva egyenest nem kapunk. Ezen egyenes meredeksége adja E_d -t, és az egyenesnek az 1/T = 0 tengelyen való metszéke pedig $g\left(\frac{m^x}{m}\right)^{3/2}$ -t adja. A donorszintek elfajulási tényezőjét g=1/2-nek véve, ebből az effektív tömeg adódik.

A mért Hali-görbéket analizáltuk a fenti modell alapján. Az analízis során nyert N_d , N_a , $\frac{m^x}{m}$ és E_d értékeket a 2. táblázat tartalmazza.

Az illesztési módszer nagyon érzékeny $N_d - N_a$ megváltoztatására, főleg a magas hőmérsékleti szakaszon. Ugyanakkor az egyenesek hajlásszögéből (meredekségéből) meghatározható aktivációs energiák eléggé keveset változnak az $N_d - N_a$ értékeinek széles tartományában, így nagyobb pontossággal határozhatók meg. A kompenzáló akceptorok koncentrációja (Na) meglehetősen nagy bizonytalansággal adódik (30-40%) a mérések korlátozott hőmérsékleti tartománya miatt. Az analízis eredményeként az adódott, hogy a kristályok kompenzációfoka két kivétellel $K_n = 20 - 30\%$. A donorok aktivációs energiájára 0 és 25 meV közötti értékek adódtak, általában nagyobb donorkoncentrációhoz alacsonyabb aktivációs energia tartozik. A kettő közötti korrelációt később diszkutáljuk.

Az 1. táblázatból látható, hogy az effektív tömeg értékei két kivétellel m^x/m $\sim {}^{1}/_{4}$ körül vannak és az effektív tömeg átlagértékére m^x/m=0,23±0,05 adódik. Megjegyezzük, hogy ez az eljárás nem ad túl pontos értéket az effektív tömegre, de így is megnyugtató, hogy a nyert érték igen közel van az infravörös ciklotronrezonancia mérésekből 77 °K hőmérsékleten mért 0,19±0,01 értékhez [5]. Megjegyezzük még, hogy a két, az átlagosnál nagyobb kompenzációjú minta esetében, amikor is a fenti analízis pontosabb eredményre vezet, 0,19 és 0,20 adódott.

A mozgékonyságnak a töltéshordozó-koncentrációval való szisztematikus változása, elsősorban alacsony hőmérsékleten lehetővé teszi a kristályainkban szerepet játszó különböző szórási mechanizmusok részletes analízisét. A méréseink alapján a rácsszórást, valamint az ionizált és semleges centrumok okozta szórást vizsgáltuk behatóan.

7. ábra. A rácsszórás által limitált mozgékonyság analízise. a — [18]-ból, b — [17]-ből vett adat(ok). Az elméleti görbék m²/m=0,18 és E_1 =13 eVértékre vannak kiszámolva. Az EP 1 minta esetében feltüntettük az ionizált szennyezők szórása által létrehozott járulékot is

A legnagyobb mozgékonyságértéket a vizsgált hőmérséklettartományban a 10 és az EP1 mintákon figyeltük meg (6. és 7. ábrák). A mért mozgékonyságok közel vannak egymáshoz annak ellenére, hogy a szennyezőkoncentrációk, melyeket a Hali-állandóból határoztunk meg, egy nagyságrendet térnek el. A 10 mintán az alacsony hőmérsékleten megfigyelt mozgékonyságcsökkenés ezen minta nagyobb donorkoncentrációjának és nagyobb kompenzációs fokának a rovására írható. Arra következtethetünk, hogy közbenső és magasabb hőmérsékleten ezen mintákon mért mozgékonyság a rácsszórás által limitált mozgékonyságra jellemző. A 300 és 100 °K hőmérsékleten mért legnagyobb mozgékonyság 315, illetve 3000 cm²/Vs, jó egyezésben az irodalmi adatokkal [2, 17, 18, 19, 20]. A 7. ábrán egyébként néhány irodalmi adatot is feltüntettünk, melyek megint csak ezt a következtetést igazolják.

Az irodalmi adatok szerint tiszta CdS egykristályokban az elektronmozgékonyságot az általunk vizsgált hőmérséklettartományban a poláris optikai fonon, valamint piezoelektromos szórás határozza meg, melyek közül az előbbi a magasabb, az utóbbi pedig az alacsonyabb hőmérsékleteken dominál [2]. A legújabb vizsgálatok szerint az akusztikus fononokon való elektronszóródás hatása sem elhanyagolható e hőmérsékleti tartományban [21, 22, 23, 24]. Megkíséreltük a $\mu_L^{-1} = \mu_{\rm P0}^{-1} + \mu_{\rm PiEZO}^{-1} + \mu_{\rm AC}^{-1}$ számítható elméleti mozgékonysággörbét a kísérleti adatokhoz illeszteni [16]. Az anyagi paraméterek értékeinek

8. ábra. Teljes mozgékonyság analízis. μ_L — rácsszórás, μ_I — ionizált szennyezőszórás, μ_N — semleges szennyezőszórás

gondos megválasztása után [16], az effektív tömeget m^x/m=0,18-nak vettük [2, 5, 24], és a deformációs potenciál értékét, tekintettel arra, hogy erre vonatkozóan az irodalomban egymással ellentmondó adatok vannak [2, 24] szabadon változtattuk és kerestük a legjobb illeszkedést. Ezt a deformációs potenciál E_1 = 13 eV-os értékére kaptuk (l. 7. ábra). A 7. ábra görbéi alapján látható, hogy a régebbi irodalommal

9. ábra. A donorok aktivációs energiája a donorkoncentrációjának függvényében. a — saját adataink, b — [26]-ból, c — [25]-ból vett adatok. Teljes vonal: saját adataink alapján, szaggatott vonal: a megfelelő görbe az 50 meV-os donorszintre [12]

ellentétben [1, 2] szobahőmérséklet környékén a poláris optikai fononokon való szóródás mellett az akusztikus fononszórás a másik fő mozgékonyságkorlátozó tényező [16, 24], és a piezoelektromos szórás csak 100°Kalattihőmérsékleteken válik jelentőssé. Ugyanezen ábrán feltüntettük az ionizált centrumok okozta szórás által létrehozott mozgékonyság járulékot az EP1 minta esetében.

Az összes további kristály esetében a mért mozgékonyságok lényegesebben kisebbek, mint az elméleti értékek, az eltérés csökkenő hőmérséklet, illetve növekvő donor és akceptor koncentráció esetén egyre nagyobb. A mozgékonyság ezen csökkenése az ionizált és semleges szennyezőcentrumok szórásának a következménye. Ekkor $\mu^{-1} = \mu_L^{-1} + \mu_N^{-1} + \mu_l^{-1}$. Az ionizált centrumok okozta mozgékonyság redukciót a Brooks-Herring, míg a semleges centrumok okozta mozgékonyságredukciót az Erginsoy formulával határoztuk meg. A semleges és ionizált centrumok koncentrációját a Hali-görbék analízise során nyert donor és akceptorkoncentrációkból határoztuk meg: $N_I =$ $=2N_a+n$ és $N_N=N_d-N_a-n$. Így tehát itt már nincs szabad paraméter. A számított és mért értékeket egypár minta esetében a 8. ábra mutatja. Mint látható az egyezés elég jó. Megállapítható volt, hogy a vizsgált minták esetében a semleges centrumok szóró hatása majdnem olyan nagy volt, mint az ionizált centrumoké. Látható, hogy a töltéshordozó-koncentráció hőmérsékletgörbék analíziséből nyert donor és akceptorkoncentrációk alapján a mozgékonyság görbék is megnyugtató módon értelmezhetők [16].

5. Az eredmények értékelése

Röviden szeretnénk megvizsgálni a donorok aktivációs energiája és a donorkoncentráció közötti őszszefüggést, és a donorok természetére vonatkozó kérdéseket. Végül összehasonlítjuk a mozgékonyság analíziséből nyert eredményeinket más szerzők eredményeivel.

A kristálynövesztés körülményeinek ismeretében feltételezhetjük, hogy ugyanazon donor játszik domináns szerepet mintáinkban, tehát az aktivációs energia megfigyelt változásai a donor-koncentráció növekedésének következménye. A 9. ábrán látható az aktivációs energia függése a donor-koncentráció köbgyökétől. Az ábrán egypár az irodalomból nyert adat is fel van tüntetve. Látható, hogy az aktivációs energia E_d lineárisan függ a donor-koncentráció köb-gyökétől, N_d^{\prime} -tól: $E_d = E_{d_0} - C \cdot N_d^{\prime}$. Itt $E_{d_0} = 32 \pm 1$ meV a donorok ionizációs energiája igen kis koncentráció esetén. Ez az extrapolált érték igen jól egyezik az irodalmi 32 ± 2 meV adattak melyet közvetlenül tiszta, adalékolatlan mintákon mért Hali-állandókból nyertek [26]. A hidrogén-centrum modellből $m^{x}/m=0,18$ és $\varkappa_{s}=9,19$ esetében 29 meV adódik. A mért adatokból $C=3,2\cdot10^{-8}$ cm·eV adódik, melv összhangban van a Pearson-Bardeen-féle elméleti modell alapján becsülhető értékkel [27].

A 30 meV-os sekély donorszinten felül gyakran figyeltek meg CdS-ban kb. 50 meV aktivációs energiájú sekély donorokat is [2, 12, 28]. A 9. ábrán [12] nyomán feltüntettük az ezen nívóra kimért $E_d - N_d$ görbét. (Hasonló görbét találunk [28]-ban is.) Az ábra

meggyőzően mutatja, hogy két egymástól különböző donorszintről van szó. Sekély, 30 meV-os donorszinteket igen gyakran figyeltek meg adalékolatlan és In, Ga Cl stb.-vel szennyezett kristályokban [2, 9, 26, 29], illetve magasabb szennyezőkoncentrációknál még sekélyebbeket. Ugyanakkor az általunk vizsgált kristályok nem voltak szándékosan adalékolva, csak a CdS por előkezelése, azaz a H_2S atmoszférában való hőkezelés hőmérséklete változott, melynek eredményeként különböző eltérések adódtak a sztöchiometriától. Ezek alapján feltehető, hogy egy a Cd felesleggel kapcsolatos intrinsic hiba játssza a domináns donorok szerepét kristályainkban [15, 16].

A Cd intersticiális atom első ionizációs energiáját rendszerint az 50 meV-os szinttel azonosítják [28, 30]. J. Woods szerint [31] a S vakancia sekély donort hoz létre kb. 20 meV-os aktivációs energiával. [32]ben kimutatták, hogy az alacsony ellenállású nemsztöchiometrikus kristályokban, amelyek növesztési körülményei hasonlóak az általunk is alkalmazottakhoz, a Cd felesleg mint S vakancia épül be a kristályokba és sekély donorokat hoz létre. A fentiek alapján úgy véljük, hogy az általunk előállított s vizsgált kristályokban vagy S vakanciák, vagy valamely a S vakanciával kapcsolatos hibakomplex játssza a domináns donor szerepét. Az előző esetben az analízis eredményeként adódott 32 meV-os aktivációs energia a S vakancia ionizációs energiájával azonosítható [16].

Erdemes megjegyezni, hogy a Svakancia és a közönséges szennyezők (donorok) ionizációs energiája igen közel van egymáshoz, szinte azonosak. Ez magyarázatul szolgálhat arra is, hogy az irodalomban igen sok esetben figyelték meg ugyanazon donorszintet 0 és 30 meV között az adalékolástól és a kristály szenynyezőitól függetlenül.

A mozgékonyság analízisének legérdekesebb eredménye az akusztikus fononokon való szóródás szerepének tisztázása, valamint a deformációs potenciál értékének megbecslése. A régebbi irodalommal ellentétben [1, 2] de a legújabbal összhangban (1. pl. [24]) az adódott, hogy az akusztikus fononszórás egyáltalán nem elhanyagolható tényező. A deformációs potenciál általunk meghatározott értéke (13 eV) némileg alacsonyabb, mint a más szerzők [22, 23, 24] által becsült 14,5-16 eV, valószínűleg a szennyezőszórás mozgékonyság-redukáló hatásának figyelembevétele miatt. Mindenesetre szobahőmérsékleten és alatta kb. 100 °K-ig az akusztikus fononszórás hatása felülmúlja a piezoelektromos szórás hatását. Analízisünk azt is megmutatta, hogy a CdS-ban a mozgékonyságnak a hőmérséklettől és a szennyezőkoncentrációtól való függése konzisztens módon értelmezhető a Halieffektusból adódó donor és akceptorkoncentrációk alapján.

Köszönetet szeretnénk mondani Intézetünk tudományos munkatársainak, Hársy Miklósnak a kristályok növesztéséért, dr. Somogyi Máriának a kontaktusok elkészítéséért és Lendvay Ödönnek az elektromosan aktív centrumokkal kapcsolatos diszkussziókért.

IRODALOM

- B. Ray, II—VI Compounds. Pergamon Press, 1969.
 Physics and Chemistry of II—VI Compounds, Ed. M.
- Aven, J. S Prener, North-Holland Publishing Company, Amsterdam, 1967.
- [3] Lendvay Ö., személyes közlés.
 [4] J. J. Hopfield, D. G. Thomas, Phys. Rev. 122 35, 1961.
- [5] K. Nagasaka, G. Kido, S. Narita, J. Phys. Soc. Jap. 28 1376, 1970.
- [6] C. H. Henry, K. Nassau, Phys. Rev. B 3 997, 1970.
- [7] S. Narita, K. Nagasaka, G. Kido, Proc. Int. Conf. Scmicond. Phys., Cambridge, Mass. 1970, p. 158.
- [8] J. Shah, T. C. Doman, Solid State Comm. 9 1285, 1971. [9] F. A. Kröger, H. J. Vink, J. Volger, Philips Res. Rept.
- 10 39, 1955.
- [10] K. Nassau, G. H. Henry, J. W. Shiever, Proc, Int, Conf. Semicond, Phys., Cambridge, Mass. 1970, p. 629.
- [11] G. D. Watkins, Radiation Effects, 9 105 1971.
- [12] W. E. Spear, J. Mort, Proc. Phys. Soc. 81, 130, 1963.
- [13] P. G. LeComber, W. E. Spear, A. Weinmann, Br. J. Appl. Phys. 17 467, 1966.
- [14] E. Kaldis, J. Crystal Growth 5 376, 1969.
- [15] M. Hársy, J. Balázs, P. Sviszt, B. Pődör, Lendvay, J. Crystal Growth 9 209 1971.
- [16] B. Pődőr, J. Balázs, M. Hársy, phys. stat. sol. 8 613 1971.
- [17] M. Ikeda, K. Itoh, H. Sato, J. Phys. Soc. Jap. 25 455 1968.
 [18] H. Fujita, K. Kobayashi, T. Kawai, K. Shiga, J. Phys. Soc. Jap. 20 109, 1965.
- [19] S. Toyotomi, K. Morigaki, J. Phys. Soc. Jap. 25 807 1968.
- [20] V. E. Henrich, G. Weinreich, Phys. Rev 178 1204, 1969.
- [21] K Kobayashi, Proc Int. Conf. II-VI Semicond. Compounds, Providence, Rhode Island, 1967 p. 755.
- [22] M. Saitoh, J. Phys. Soc. Jap. 21 2540 1966.
- [23] M. Onuki, K. Shiga, Proc. Int. Conf. Semicond. Phys, Kyoto, 1966, p. 427.
- [24] D. L. Rode, Phys. Rev. B 2 4036, 1970.
- [25] M. Itakura, H. Toyoda, Rev. Electr. Comm. Labor, Tokyo 14 1, 1966.
- [26] W. W. Piper, R. E. Halsted, Proc. Int. Conf. Semicond. Phys. Prague, 1960, p. 1046.
- [27] G. L. Pearson, J. Bardeen, Phys. Rev. 75 855, 1949.
- [28] R. O. Chester, J. Appl. Phys. 38 1745 1967.
- [29] R. H. Bube, Photoconductivity in Solids, Wiley and Sons, 1960.
- [30] R. Boyn, phys. stat. sol. 29 307, 1968.
- [31] J. Woods, D. A. Wright Conf. Solid State Phys. in Electron. and Telecommunucations, Brussels, 1958, Academic Press,New York, p. 880.
- [32] L. Clark, J. Woods, Br. J. Appl. Phys. 17 319 1966.

LAPUNK PÉLDÁNYONKÉNT MEGVÁSÁROLHATÓ: V., YÁCI UTCA 10, V., BAJCSY-ZSILINSZKY ÚT 76. SZÁM ALATTI HÍRLAPBOLTOKBAN